skip to main content

Title: Disturbance type and species life history predict mammal responses to humans
Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human-dominated landscapes such that only species with “winning” combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty-three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species’ capacity to tolerate disturbance or exploit human-dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster-reproducing species. The positive and negative more » effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human-modified landscapes. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1652420 2038704 1556248
Publication Date:
NSF-PAR ID:
10250395
Journal Name:
Global Change Biology
ISSN:
1354-1013
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rates of human-induced environmental change continue increasing with human population size, potentially altering animal physiology and negatively affecting wildlife. Researchers often use glucocorticoid concentrations (hormones that can be associated with stressors) to gauge the impact of anthropogenic factors (e.g. urbanization, noise and light pollution). Yet, no general relationships between human-induced environmental change and glucocorticoids have emerged. Given the number of recent studies reporting baseline and stress-induced corticosterone (the primary glucocorticoid in birds and reptiles) concentrations worldwide, it is now possible to conduct large-scale comparative analyses to test for general associations between disturbance and baseline and stress-induced corticosterone across species. Additionally, we can control for factors that may influence context, such as life history stage, environmental conditions and urban adaptability of a species. Here, we take a phylogenetically informed approach and use data from HormoneBase to test if baseline and stress-induced corticosterone are valid indicators of exposure to human footprint index, human population density, anthropogenic noise and artificial light at night in birds and reptiles. Our results show a negative relationship between anthropogenic noise and baseline corticosterone for birds characterized as urban avoiders. While our results potentially indicate that urban avoiders are more sensitive to noise than other species, overallmore »our study suggests that the relationship between human-induced environmental change and corticosterone varies across species and contexts; we found no general relationship between human impacts and baseline and stress-induced corticosterone in birds, nor baseline corticosterone in reptiles. Therefore, it should not be assumed that high or low levels of exposure to human-induced environmental change are associated with high or low corticosterone levels, respectively, or that closely related species, or even individuals, will respond similarly. Moving forward, measuring alternative physiological traits alongside reproductive success, health and survival may provide context to better understand the potential negative effects of human-induced environmental change.« less
  2. Abstract Background

    Animal movement is a key ecological process that is tightly coupled to local environmental conditions. While agriculture, urbanisation, and transportation infrastructure are critical to human socio-economic improvement, these have spurred substantial changes in animal movement across the globe with potential impacts on fitness and survival. Notably, however, human disturbance can have differential effects across species, and responses to human activities are thus largely taxa and context specific. As human disturbance is only expected to worsen over the next decade it is critical to better understand how species respond to human disturbance in order to develop effective, case-specific conservation strategies.

    Methods

    Here, we use an extensive telemetry dataset collected over 22 years to fill a critical knowledge gap in the movement ecology of lowland tapirs (Tapirus terrestris) across areas of varying human disturbance within three biomes in southern Brazil: the Pantanal, Cerrado, and Atlantic Forest.

    Results

    From these data we found that the mean home range size across all monitored tapirs was 8.31 km2(95% CI 6.53–10.42), with no evidence that home range sizes differed between sexes nor age groups. Interestingly, although the Atlantic Forest, Cerrado, and Pantanal vary substantially in habitat composition, levels of human disturbance, and tapir population densities, we found that lowlandmore »tapir movement behaviour and space use were consistent across all three biomes. Human disturbance also had no detectable effect on lowland tapir movement. Lowland tapirs living in the most altered habitats we monitored exhibited movement behaviour that was comparable to that of tapirs living in a near pristine environment.

    Conclusions

    Contrary to our expectations, although we observed individual variability in lowland tapir space use and movement, human impacts on the landscape also had no measurable effect on their movement. Lowland tapir movement behaviour thus appears to exhibit very little phenotypic plasticity in response to human disturbance. Crucially, the lack of any detectable response to anthropogenic disturbance suggests that human modified habitats risk being ecological traps for tapirs and this information should be factored into conservation actions and species management aimed towards protecting lowland tapir populations.

    « less
  3. The ability to move is essential for animals to find mates, escape predation, and meet energy and water demands. This is especially important across grazing systems where vegetation productivity can vary drastically between seasons or years. With grasslands undergoing significant changes due to climate change and anthropogenic development, there is an urgent need to determine the relative impacts of these pressures on the movement capacity of native herbivores. To measure these impacts, we fitted 36 white-bearded wildebeest ( Connochaetes taurinus ) with GPS collars across three study areas in southern Kenya (Amboseli Basin, Athi-Kaputiei Plains, and Mara) to test the relationship between movement (e.g., directional persistence, speed, home range crossing time) and gradients of vegetation productivity (i.e., NDVI) and anthropogenic disturbance. As expected, wildebeest moved the most (21.0 km day –1 ; CI: 18.7–23.3) across areas where movement was facilitated by low human footprint and necessitated by low vegetation productivity (Amboseli Basin). However, in areas with moderate vegetation productivity (Athi-Kaputiei Plains), wildebeest moved the least (13.3 km day –1 ; CI: 11.0–15.5). This deviation from expectations was largely explained by impediments to movement associated with a large human footprint. Notably, the movements of wildebeest in this area were also lessmore »directed than the other study populations, suggesting that anthropogenic disturbance (i.e., roads, fences, and the expansion of settlements) impacts the ability of wildebeest to move and access available resources. In areas with high vegetation productivity and moderate human footprint (Mara), we observed intermediate levels of daily movement (14.2 km day –1 ; CI: 12.3–16.1). Wildebeest across each of the study systems used grassland habitats outside of protected areas extensively, highlighting the importance of unprotected landscapes for conserving mobile species. These results provide unique insights into the interactive effects of climate and anthropogenic development on the movements of a dominant herbivore in East Africa and present a cautionary tale for the development of grazing ecosystems elsewhere.« less
  4. Abstract

    Apex predators can influence ecosystems through density and behaviorally mediated effects on herbivores and mesopredators. In many parts of the world, apex predators live in, or are returning to, landscapes that have been modified by people; so, it is important to understand their ecological role in anthropogenic landscapes. We used motion-activated game cameras to compare the activity patterns of humans and 2 mesopredators, coyotes (Canis latrans) and bobcats (Lynx rufus), in areas with and without an apex predator, the gray wolf (Canis lupus), in a multiuse landscape of the northwestern United States. In areas with wolves, there was a significant increase in temporal niche overlap between the mesopredators owing to higher levels of coyote activity at all time periods of the day. Temporal overlap between mesopredators and humans also increased significantly in the presence of wolves. Coyotes exposed to wolves increased their activity during dawn, day, and dusk hours. The increase in coyote activity was greatest during the day, when wolves were least active. The direction of change in bobcat activity in areas with wolves was opposite to coyotes, suggesting a behaviorally mediated cascade between wolves, coyotes, and bobcats, although these findings would need to be confirmed with furthermore »research. Our findings suggest that mesopredators in human-dominated systems may perceive humans as less dangerous than apex predators, that humans may be more likely to encounter mesopredators in areas occupied by top predators, and that behaviorally mediated effects of apex predators on mesopredators persist in human-dominated landscapes.

    « less
  5. Human-altered disturbance regimes and changing climatic conditions can reduce seed availability and suitable microsites, limiting seedling regeneration in recovering forest systems. Thus, resprouting plants, which can persist in situ, are expected to expand in dominance in many disturbance-prone forests. However, resprouters may also be challenged by changing regimes, and the mechanisms determining facultative seedling recruitment by resprouting species, which will determine both the future spread and current persistence of these populations, are poorly understood. In the resprouter-dominated forests of coastal California, interactions between wildfire and an emerging disease, sudden oak death (SOD), alter disturbance severity and tree mortality, which may shift forest regeneration trajectories. We examine this set of compound disturbances to (1) assess the influence of seed limitation, biotic competition, and abiotic conditions on seedling regeneration in resprouting populations; (2) investigate whether disease-fire interactions alter postfire seedling regeneration, which have implications for future disease dynamics and shifts in forest composition. Following a wildfire that impacted a preexisting plot network in SOD-affected forests, we monitored seedling abundances and survival over eight years. With pre- and postfire data, we assessed relationships between regeneration dynamics and disturbance severity, biotic, and abiotic variables, using Bayesian generalized linear models and mixed models. Our resultsmore »indicate that postfire seedling regeneration by resprouting species was shaped by contrasting mechanisms reflecting seed limitation and competitive release. Seedling abundances declined with decreasing postfire survival of mature, conspecific stems, while belowground survival of resprouting genets had no effect. However, where seed sources persisted, seedling abundances and survival generally increased with the prefire severity of disease impacts, suggesting that decreased competition with adults may enhance seedling recruitment in this resprouter-dominated system. Species’ regeneration responses varied with their relative susceptibility to SOD and suggest compositional shifts, which will determine future disease management and forest restoration actions. These results additionally highlight that mechanisms related to biotic competition, seed limitation, and opportunities for seedling recruitment beneath mature canopies may determine possible shifts in the occurrence of resprouting traits. This result has broad applications to other systems impacted by human-altered regimes where asexual persistence may be predicted to be a beneficial life history strategy.« less