skip to main content


Title: Option Tracing: Beyond Correctness Analysis in Knowledge Tracing
Knowledge tracing refers to a family of methods that estimate each student’s knowledge component/skill mastery level from their past responses to questions. One key limitation of most existing knowledge tracing methods is that they can only estimate an overall knowledge level of a student per knowledge component/skill since they analyze only the (usually binary-valued) correctness of student responses. Therefore, it is hard to use them to diagnose specific student errors. In this paper, we extend existing knowledge tracing methods beyond correctness prediction to the task of predicting the exact option students select in multiple choice questions. We quantitatively evaluate the performance of our option tracing methods on two large-scale student response datasets. We also qualitatively evaluate their ability in identifying common student errors in the form of clusters of incorrect options across different questions that correspond to the same error.  more » « less
Award ID(s):
1917545
NSF-PAR ID:
10250475
Author(s) / Creator(s):
; ;
Editor(s):
Roll, I; McNamara, D; Sosnovsky, S; Luckin, R; Dimitrova, V.
Date Published:
Journal Name:
International Conference on Artificial Intelligence in Education
Volume:
12748
Page Range / eLocation ID:
137-149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Knowledge tracing is an essential and challenging task in intelligent tutoring systems, whose goal is to estimate students’ knowledge state based on their responses to questions. Although many models for knowledge tracing task are developed, most of them depend on either concepts or items as input and ignore the hierarchical structure of items, which provides valuable information for the prediction of student learning results. In this paper, we propose a novel deep hierarchical knowledge tracing (DHKT) model exploiting the hierarchical structure of items. In the proposed DHKT model, the hierarchical relations between concepts and items are modeled by the hinge loss on the inner product between the learned concept embeddings and item embeddings. Then the learned embeddings are fed into a neural network to model the learning process of students, which is used to make predictions. The prediction loss and the hinge loss are minimized simultaneously during training process. 
    more » « less
  2. Knowledge tracing (KT) refers to the problem of predicting future learner performance given their past performance in educational applications. Recent developments in KT using flexible deep neural network-based models excel at this task. However, these models often offer limited interpretability, thus making them insufficient for personalized learning, which requires using interpretable feedback and actionable recommendations to help learners achieve better learning outcomes. In this paper, we propose attentive knowledge tracing (AKT), which couples flexible attention-based neural network models with a series of novel, interpretable model components inspired by cognitive and psychometric models. AKT uses a novel monotonic attention mechanism that relates a learner’s future responses to assessment questions to their past responses; attention weights are computed using exponential decay and a context-aware relative distance measure, in addition to the similarity between questions. Moreover, we use the Rasch model to regularize the concept and question embeddings; these embeddings are able to capture individual differences among questions on the same concept without using an excessive number of parameters. We conduct experiments on several real-world benchmark datasets and show that AKT outperforms existing KT methods (by up to 6% in AUC in some cases) on predicting future learner responses. We also conduct several case studies and show that AKT exhibits excellent interpretability and thus has potential for automated feedback and personalization in real-world educational settings. 
    more » « less
  3. Background and context. “Explain in Plain English” (EiPE) questions ask students to explain the high-level purpose of code, requiring them to understand the macrostructure of the program’s intent. A lot is known about techniques that experts use to comprehend code, but less is known about how we should teach novices to develop this capability. Objective. Identify techniques that can be taught to students to assist them in developing their ability to comprehend code and contribute to the body of knowledge of how novices develop their code comprehension skills. Method. We developed interventions that could be taught to novices motivated by previous research about how experts comprehend code: prompting students to identify beacons, identify the role of variables, tracing, and abstract tracing. We conducted think-aloud interviews of introductory programming students solving EiPE questions, varying which interventions each student was taught. Some participants were interviewed multiple times throughout the semester to observe any changes in behavior over time. Findings. Identifying beacons and the name of variable roles were rarely helpful, as they did not encourage students to integrate their understanding of that piece in relation to other lines of code. However, prompting students to explain each variable’s purpose helped them focus on useful subsets of the code, which helped manage cognitive load. Tracing was helpful when students incorrectly recognized common programming patterns or made mistakes comprehending syntax (text-surface). Prompting students to pick inputs that potentially contradicted their current understanding of the code was found to be a simple approach to them effectively selecting inputs to trace. Abstract tracing helped students see high-level, functional relationships between variables. In addition, we observed student spontaneously sketching algorithmic visualizations that similarly helped them see relationships between variables. Implications. Because students can get stuck at many points in the process of code comprehension, there seems to be no silver bullet technique that helps in every circumstance. Instead, effective instruction for code comprehension will likely involve teaching a collection of techniques. In addition to these techniques, meta-knowledge about when to apply each technique will need to be learned, but that is left for future research. At present, we recommend teaching a bottom-up, concrete-to-abstract approach. 
    more » « less
  4. Dorn, Brian ; Vahrenhold, Jan (Ed.)
    Background and Context Lopez and Lister first presented evidence for a skill hierarchy of code reading, tracing, and writing for introductory programming students. Further support for this hierarchy could help computer science educators sequence course content to best build student programming skill. Objective This study aims to replicate a slightly simplified hierarchy of skills in CS1 using a larger body of students (600+ vs. 38) in a non-major introductory Python course with computer-based exams. We also explore the validity of other possible hierarchies. Method We collected student score data on 4 kinds of exam questions. Structural equation modeling was used to derive the hierarchy for each exam. Findings We find multiple best-fitting structural models. The original hierarchy does not appear among the “best” candidates, but similar models do. We also determined that our methods provide us with correlations between skills and do not answer a more fundamental question: what is the ideal teaching order for these skills? Implications This modeling work is valuable for understanding the possible correlations between fundamental code-related skills. However, analyzing student performance on these skills at a moment in time is not sufficient to determine teaching order. We present possible study designs for exploring this more actionable research question. 
    more » « less
  5. Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling tasks: post-test scores prediction and learning gains prediction. Additionally, while previous work on student learning has often used skill/knowledge components identified by domain experts, we incorporated an automatic skill discovery method (SK), which includes a nonparametric prior over the exercise-skill assignments, to all three models. Thus, we explored a total of six models: BKT, BKT+SK, IBKT, IBKT+SK, LSTM, and LSTM+SK. Two training datasets were employed, one was collected from a natural language physics intelligent tutoring system named Cordillera, and the other was from a standard probability intelligent tutoring system named Pyrenees. Overall, our results showed that BKT and BKT+SK outperformed the others on predicting post-test scores, whereas LSTM and LSTM+SK achieved the highest accuracy, F1-measure, and area under the ROC curve (AUC) on predicting learning gains. Furthermore, we demonstrated that by combining SK with the BKT model, BKT+SK could reliably predict post-test scores using only the earliest 50% of the entire training sequences. For learning gain early prediction, using the earliest 70% of the entire sequences, LSTM can deliver a comparable prediction as using the entire training sequences. The findings yield a learning environment that can foretell students’ performance and learning gains early, and can render adaptive pedagogical strategy accordingly. 
    more » « less