skip to main content


Title: Changes in Teacher Self-efficacy Through Engagement in an Engineering Professional Development Partnership
K-12 teachers serve a critical role in their students’ development of interest in engineering, especially as engineering content is emphasized in curriculum standards. However, teachers may not be comfortable teaching engineering in their classrooms as it can require a different set of skills from which they are trained. Professional development activities focused on engineering content can help teachers feel more comfortable teaching the subject in their classrooms and can increase their knowledge of engineering and thus their engineering teaching self-efficacy. There are many different types of professional development activities teachers might experience, each one with a set of established best practices. VT PEERS (Virginia Tech Partnering with Educators and Engineers in Rural Communities) is a program designed to provide recurrent hands-on engineering activities to middle school students in or near rural Appalachia. The project partners middle school teachers, university affiliates, and local industry partners throughout the state region to develop and implement engineering activities that align with state defined standards of learning (SOLs). Throughout this partnership, teachers co-facilitate engineering activities in their classrooms throughout the year with the other partners, and teachers have the opportunity to participate in a two-day collaborative workshop every year. VT PEERS held a workshop during the summer of 2019, after the second year of the partnership, to discuss the successes and challenges experienced throughout the program. Three focus groups, one for each grade level involved (grades 6-8), were held during the summit for teachers and industry partners to discuss their experiences. None of the teachers involved in the partnership have formal training in engineering. The transcripts of these focus groups were the focus of the exploratory qualitative data analyses to answer the following research question: How do middle-school teachers develop teaching engineering self-efficacy through professional development activities? Deductive coding of the focus group transcripts was completed using the four sources of self-efficacy: mastery experience, vicarious experience, verbal persuasion and physiological states. The analysis revealed that vicarious experiences can be particularly valuable to increasing teachers’ teaching engineering self-efficacy. For example, teachers valued the ability to play the role of a student in an engineering lesson and being able to share ideas about teaching engineering lessons with other teachers. This information can be useful to develop engineering-focused professional development activities for teachers. Additionally, as teachers gather information from their teaching engineering vicarious experiences, they can inform their own teaching practices and practice reflective teaching as they teach lessons.  more » « less
Award ID(s):
1657263
NSF-PAR ID:
10250479
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The purpose of this research study is to understand teacher experiences throughout their second year of engagement in the Virginia Tech Partnering with Educators and Engineers in Rural Schools partnership. This partnership is an assets-based community partnership in a rural environment between middle school teachers, regional industry, and university affiliates that is focused on implementing recurrent, hands-on, culturally relevant engineering activities for middle school students. This qualitative study uses constant comparative methodology informed by grounded theory on teacher interviews to capture both teacher experiences in the partnership as well as teacher-identified assets in their classrooms and school communities. Using the sensitizing concepts of pedagogical content knowledge, self-efficacy, and the Interconnected Model of Teacher Growth, this study found that while teachers experienced the program differently depending on their contextual setting of their schools, all teachers expressed shifts in their recognition of and value placed on community assets. Findings also suggest that teachers greatly value involving industry and university partners in the classroom to highlight the applications of engineering in their communities and support a reimagination of engineering conceptions and careers for both students and teachers. Teachers reported that the hands-on, team-based, culturally relevant engineering activities engaged learners and showcased individual strengths in ways they otherwise do not see exhibited in their traditional curriculum. The partnership ultimately allowed teachers to identify how assets in schools’ rural communities, beyond those previously identified within their schools, could aid them in further developing and implementing engineering activities. With teachers serving as role models for students, it is important to support teachers’ reimagination of engineering conceptions and integration into the classroom to ultimately increase students’ engineering engagement. Our findings highlight the value of community-based approaches in supporting engineering integration in the classroom and describe the assets that teachers note as being the most significant in their community. 
    more » « less
  2. Integrated STEM approaches in K-12 science and math instruction can be more engaging and meaningful for students and often meet the curriculum content and practice goals better than single-subject lessons. Engineering, as a key component of STEM education, offers hands-on, designed-based, problem solving activities to drive student interest and confidence in STEM overall. However, K-12 STEM teachers may not feel equipped to implement engineering practices and may even experience anxiety about trying them out in their classrooms without the added support of professional development and professional learning communities. To address these concerns and support engineering integration, this research study examined the experiences of 18 teachers in one professional development program dedicated to STEM integration and engineering pedagogy for K-12 classrooms. This professional development program positioned the importance of the inclusion of engineering content and encouraged teachers to explore community-based, collaborative activities that identified and spoke to societal needs and social impacts through engineering integration. Data collected from two of the courses in this project, Enhancing Mathematics with STEM and Engineering in the K-12 Classroom, included participant reflections, focus groups, microteaching lesson plans, and field notes. Through a case study approach and grounded theory analysis, themes of self-efficacy, active learning supports, and social justice teaching emerged. The following discussion on teachers’ engineering and STEM self-efficacy, teachers’ integration of engineering to address societal needs and social impacts, and teachers’ development in engineering education through hands-on activities, provides better understanding of engineering education professional development for K-12 STEM teachers. 
    more » « less
  3. null (Ed.)

    Prekindergarten to 12th-grade teachers of computer science (CS) face many challenges, including isolation, limited CS professional development resources, and low levels of CS teaching self-efficacy that could be mitigated through communities of practice (CoPs). This study used survey data from 420 PK–12 CS teacher members of a virtual CoP, CS for All Teachers, to examine the needs of these teachers and how CS teaching self-efficacy, community engagement, and sharing behaviors vary by teachers’ instructional experiences and school levels taught. Results show that CS teachers primarily join the CoP to gain high-quality pedagogical, assessment, and instructional resources. The study also found that teachers with more CS teaching experience have higher levels of self-efficacy and are more likely to share resources than teachers with less CS teaching experience. Moreover, teachers who instruct students at higher grade levels (middle and high school) have higher levels of CS teaching self-efficacy than do teachers who instruct lower grade levels (elementary school). These results suggest that CoPs can help CS teachers expand their professional networks, gain more professional development resources, and increase CS teaching self-efficacy by creating personalized experiences that consider teaching experience and grade levels taught when guiding teachers to relevant content. This study lays the foundation for future explorations of how CS education–focused CoPs could support the expansion of CS education in PK–12 schools.

     
    more » « less
  4. Background: Researcher-practitioner partnerships (RPPs) have gained increasing prominence within education, since they are crucial for identifying partners’ problems of practice and seeking solutions for improving district (or school) problems. The CS Pathways RPP project brought together researchers and practitioners, including middle school teachers and administrators from three urban school districts, to build teachers’ capacity to implement an inclusive computer science and digital literacy (CSDL) curriculum for all students in their middle schools. Objective: This study explored the teachers’ self-efficacy development in teaching a middle school CSDL curriculum under the project’s RPP framework. The ultimate goal was to gain insights into how the project’s RPP framework and its professional development (PD) program supported teachers’ self-efficacy development, in particular its challenges and success of the partnership. Method: Teacher participants attended the first-year PD program and were surveyed and/or interviewed about their self-efficacy in teaching CSDL curriculum, spanning topics ranging from digital literacy skills to app creation ability and curriculum implementation. Both survey and interview data were collected and analyzed using mixed methods 1) to examine the reach of the RPP PD program in terms of teachers’ self-efficacy; 2) to produce insightful understandings of the PD program impact on the project’s goal of building teachers’ self-efficacy. Results and Discussion: We reported the teachers’ self-efficacy profiles based on the survey data. A post-survey indicated that a majority of the teachers have high self-efficacy in teaching the CSDL curriculum addressed by the RPP PD program. Our analysis identified five critical benefits the project’s RPP PD program provided, namely collaborative efforts on resource and infrastructure building, content and pedagogical knowledge growth, collaboration and communication, and building teacher identity. All five features have shown direct impacts on teachers' self-efficacy. The study also reported teachers’ perceptions on the challenges they faced and potential areas for improvements. These findings indicate some important features of an effective PD program, informing the primary design of an RPP CS PD program. 
    more » « less
  5. The rapid expansion of Artificial Intelligence (AI) necessitates educating all students about AI. This, however, poses great challenges because most K-12 teachers have limited prior knowledge or experience of teaching AI. This exploratory study reports the design of an online professional development program aimed at preparing teachers for teaching AI in classrooms. The program includes a book club where teachers read a book about AI and learned key activities of an AI curriculum developed for middle schoolers, and a 2-week practicum where teachers co-taught the curriculum in a summer camp. The participants were 17 teachers from three school districts across the United States. Analysis of their surveys revealed an increase in teachers’ content knowledge and self-efficacy in teaching AI. Teachers reported that the book club taught them AI concepts and the practicum sharpened their teaching practices. Our findings reveal valuable insights on teacher training for the AI education field. 
    more » « less