Effective and equitable CS teaching in classrooms is contingent on teachers' high-levels of self-efficacy in CS as well as a robust understanding of equity issues in CS classrooms. To this end, our study examined the influence of a professional development (PD) course, Teaching Exploring Computer Science (TECS), on promoting teacher self-efficacy and equity awareness in CS education. This nine-week PD was offered in a hybrid format, delivering on-line and face-to-face classes to high school teachers across various disciplines who served under-represented students. The participants completed a selfefficacy survey focusing on their ability to teach ECS, both before and after the course. Results showed that teachers' selfefficacy in the content knowledge and pedagogical knowledge of ECS significantly increased as a result of taking the course. We also evaluated teacher's understanding of the equity issues by conducting a content analysis of their reflection essays written at the end of the course. Four major themes emerged from the content analysis, highlighting the impact of equitable practices on CS participation. This research demonstrates the role of a professional development course in promoting teachers' self-efficacy beliefs in teaching CS and their understanding of the equity issues and presents tools for assessing teachers' development in these areas. 
                        more » 
                        « less   
                    
                            
                            Teachers’ Engagement and Self-Efficacy in a PK–12 Computer Science Teacher Virtual Community of Practice
                        
                    
    
            Prekindergarten to 12th-grade teachers of computer science (CS) face many challenges, including isolation, limited CS professional development resources, and low levels of CS teaching self-efficacy that could be mitigated through communities of practice (CoPs). This study used survey data from 420 PK–12 CS teacher members of a virtual CoP, CS for All Teachers, to examine the needs of these teachers and how CS teaching self-efficacy, community engagement, and sharing behaviors vary by teachers’ instructional experiences and school levels taught. Results show that CS teachers primarily join the CoP to gain high-quality pedagogical, assessment, and instructional resources. The study also found that teachers with more CS teaching experience have higher levels of self-efficacy and are more likely to share resources than teachers with less CS teaching experience. Moreover, teachers who instruct students at higher grade levels (middle and high school) have higher levels of CS teaching self-efficacy than do teachers who instruct lower grade levels (elementary school). These results suggest that CoPs can help CS teachers expand their professional networks, gain more professional development resources, and increase CS teaching self-efficacy by creating personalized experiences that consider teaching experience and grade levels taught when guiding teachers to relevant content. This study lays the foundation for future explorations of how CS education–focused CoPs could support the expansion of CS education in PK–12 schools. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1836310
- PAR ID:
- 10298873
- Date Published:
- Journal Name:
- Journal of Computer Science Integration
- ISSN:
- 2574-108X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            NA (Ed.)Abstract Music and computer science (CS) have profound historical and structural connections, with programming music offering a promising avenue for engaging children in CS through creative expression. To foster this engagement, our team developed M-Flow, a flow-based music programming platform designed to introduce students to CS via music. Despite extensive existing research in music and CS education, experience reports and empirical studies on K-12 teachers' implementation and its impact on young kids' learning are limited. Therefore, we recruit elementary school teachers and students with no or limited prior programming experience, introducing them to M-Flow and its curriculum through a professional development workshop, a semester's job embedded support, and classroom implementation. We describe the experiences of teachers as they attempt to integrate music and CS, the challenges they face, and the influence on students' attitudes toward learning computing concepts. Specifically, we reflect on our intervention by conducting a sequential mixed-method evaluation. During the qualitative phase, we collected multiple sources of data from three teachers through focus groups and debriefings after a semester of classroom implementation. Thematic analysis of workshop activities, interviews, and debrief videos revealed three themes with seven sub-themes on teachers' integration of flow-based music programming and two themes with five sub-themes on challenges faced by the teachers. In the quantitative phase, we gathered data on attitudes and self-efficacy from 75 students taught by these teachers. Results indicate that the flow-based music programming environment provided an engaging programming experience for students and significantly increased their self-efficacy towards learning programming.more » « less
- 
            The rapid expansion of Artificial Intelligence (AI) necessitates educating all students about AI. This, however, poses great challenges because most K-12 teachers have limited prior knowledge or experience of teaching AI. This exploratory study reports the design of an online professional development program aimed at preparing teachers for teaching AI in classrooms. The program includes a book club where teachers read a book about AI and learned key activities of an AI curriculum developed for middle schoolers, and a 2-week practicum where teachers co-taught the curriculum in a summer camp. The participants were 17 teachers from three school districts across the United States. Analysis of their surveys revealed an increase in teachers’ content knowledge and self-efficacy in teaching AI. Teachers reported that the book club taught them AI concepts and the practicum sharpened their teaching practices. Our findings reveal valuable insights on teacher training for the AI education field.more » « less
- 
            null (Ed.)K-12 teachers serve a critical role in their students’ development of interest in engineering, especially as engineering content is emphasized in curriculum standards. However, teachers may not be comfortable teaching engineering in their classrooms as it can require a different set of skills from which they are trained. Professional development activities focused on engineering content can help teachers feel more comfortable teaching the subject in their classrooms and can increase their knowledge of engineering and thus their engineering teaching self-efficacy. There are many different types of professional development activities teachers might experience, each one with a set of established best practices. VT PEERS (Virginia Tech Partnering with Educators and Engineers in Rural Communities) is a program designed to provide recurrent hands-on engineering activities to middle school students in or near rural Appalachia. The project partners middle school teachers, university affiliates, and local industry partners throughout the state region to develop and implement engineering activities that align with state defined standards of learning (SOLs). Throughout this partnership, teachers co-facilitate engineering activities in their classrooms throughout the year with the other partners, and teachers have the opportunity to participate in a two-day collaborative workshop every year. VT PEERS held a workshop during the summer of 2019, after the second year of the partnership, to discuss the successes and challenges experienced throughout the program. Three focus groups, one for each grade level involved (grades 6-8), were held during the summit for teachers and industry partners to discuss their experiences. None of the teachers involved in the partnership have formal training in engineering. The transcripts of these focus groups were the focus of the exploratory qualitative data analyses to answer the following research question: How do middle-school teachers develop teaching engineering self-efficacy through professional development activities? Deductive coding of the focus group transcripts was completed using the four sources of self-efficacy: mastery experience, vicarious experience, verbal persuasion and physiological states. The analysis revealed that vicarious experiences can be particularly valuable to increasing teachers’ teaching engineering self-efficacy. For example, teachers valued the ability to play the role of a student in an engineering lesson and being able to share ideas about teaching engineering lessons with other teachers. This information can be useful to develop engineering-focused professional development activities for teachers. Additionally, as teachers gather information from their teaching engineering vicarious experiences, they can inform their own teaching practices and practice reflective teaching as they teach lessons.more » « less
- 
            In pre-college levels, integrated science, technology, engineering, and mathematics (STEM) are often taught by science or mathematics teachers. These teachers lack the engineering and technology background and they do not necessarily use project-based and inquiry-oriented instructional strategies. To close the gap in the qualified STEM education teacher workforce, the authors developed and piloted a novel course to train preservice STEM teachers to effectively employ project-based and inquiry-oriented teaching strategies at pre-college levels. This 3-credit research and design experience course was piloted in the Spring 2023 semester. The preservice STEM teachers, enrolled in the course, engaged in hands-on activities, engineering project-based training, inquiry-based learning techniques through research training, makerspace training, field experience, and mentorship. The course comprised two parts. In part I, the students received research training. In part II, the students engaged in engineering design and makerspace professional development. In this paper, we report on the course design elements and the impact of the course activities on students’ self-efficacy in teaching STEM subjects using emerging technology, as well as their teaching approaches and understanding of student learning. The authors conducted a mixed methods study and collected both qualitative and quantitative data. Preliminary results of the multiyear study are presented. Initial findings indicate a heightened confidence of the students in their ability to deliver STEM content in secondary classrooms. Students improved their teaching approaches and reported positive experiences with the course.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    