Microbes have been critical drivers of evolutionary innovation in animals. To understand the processes that influence the origin of specialized symbiotic organs, we report the sequencing and analysis of the genome of
- NSF-PAR ID:
- 10250499
- Editor(s):
- Ruiz-Rodriguez, Magdalena
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0244586
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Euprymna scolopes , a model cephalopod with richly characterized host–microbe interactions. We identified large-scale genomic reorganization shared betweenE. scolopes andOctopus bimaculoides and posit that this reorganization has contributed to the evolution of cephalopod complexity. To reveal genomic signatures of host–symbiont interactions, we focused on two specialized organs ofE. scolopes : the light organ, which harbors a monoculture ofVibrio fischeri , and the accessory nidamental gland (ANG), a reproductive organ containing a bacterial consortium. Our findings suggest that the two symbiotic organs withinE. scolopes originated by different evolutionary mechanisms. Transcripts expressed in these microbe-associated tissues displayed their own unique signatures in both coding sequences and the surrounding regulatory regions. Compared with other tissues, the light organ showed an abundance of genes associated with immunity and mediating light, whereas the ANG was enriched in orphan genes known only fromE. scolopes . Together, these analyses provide evidence for different patterns of genomic evolution of symbiotic organs within a single host. -
Steinernema entomopathogenic nematodes form specific, obligate symbiotic associations with gram-negative, gammaproteobacteria members of the Xenorhabdus genus. Together, the nematodes and symbiotic bacteria infect and kill insects, utilize the nutrient-rich cadaver for reproduction, and then reassociate, the bacteria colonizing the nematodes’ anterior intestines before the nematodes leave the cadaver to search for new prey. In addition to their use in biocontrol of insect pests, these nematode-bacteria pairs are highly tractable experimental laboratory models for animal-microbe symbiosis and parasitism research. One advantageous feature of entomopathogenic nematode model systems is that the nematodes are optically transparent, which facilitates direct observation of nematode-associated bacteria throughout the lifecycle. In this work, green- and red-fluorescently labeled X. griffiniae HGB2511 bacteria were created and associated with their S. hermaphroditum symbiotic nematode partners and observed using fluorescence microscopy. As expected, the fluorescent bacteria were visible as a colonizing cluster in the lumen of the anterior intestinal caecum of the infective stage of the nematode. These tools allow detailed observations of X. griffiniae localization and interactions with its nematode and insect host tissues throughout their lifecycles.
-
Abstract The onset of global climate change has led to abnormal rainfall patterns, disrupting associations between wildlife and their symbiotic microorganisms. We monitored a population of pumpkin toadlets and their skin bacteria in the Brazilian Atlantic Forest during a drought. Given the recognized ability of some amphibian skin bacteria to inhibit the widespread fungal pathogen
Batrachochytrium dendrobatidis (Bd), we investigated links between skin microbiome health, susceptibility to Bd and host mortality during a die‐off event. We found that rainfall deficit was an indirect predictor of Bd loads through microbiome disruption, while its direct effect on Bd was weak. The microbiome was characterized by fewer putative Bd‐inhibitory bacteria following the drought, which points to a one‐month lagged effect of drought on the microbiome that may have increased toadlet susceptibility to Bd. Our study underscores the capacity of rainfall variability to disturb complex host–microbiome interactions and alter wildlife disease dynamics. -
Hymenolepis ackerti n. sp., parasite of rodents from the tallgrass prairie ecoregion of North America is herein characterized. This tapeworm occurs in 3 species of rodents including the hispid cotton rat Sigmodon hispidus, the eastern woodrat Neotoma floridana, and the prairie vole Microtus ochrogaster. A comparison against the other 10 congeneric species known from North America reveals that this species is different based on the size of the scolex, length of rostellar capsule, testicular arrangement, and the size of cirrus sac, seminal receptacle and eggs. A comparison of mitochondrial DNA reveals that tapeworms present in sympatric mammals share the same mitochondrial haplotype and feature similar morphology, supporting their recognition as a single species. The phylogenetic position of H. ackerti relative to other species is still to be resolved, since there are no homologous sequences available for most species in the genus. Given the pervasiveness of these parasites across rodents in the continent, we recommend diligence among scientists to build public archives of tapeworm specimens collected from mammals across North America, and globally. In the present manuscript, we propose a method to sample DNA while still allowing specimens to be postfixed for staining or fluid-preserved for long term storage.
-
Abstract Mammals rely on the metabolic functions of their gut microbiota to meet their energetic needs and digest potentially toxic components in their diet. The gut microbiome plastically responds to shifts in host diet and may buffer variation in energy and nutrient availability. However, it is unclear how seasonal differences in the gut microbiome influence microbial metabolism and nutrients available to hosts. In this study, we examine seasonal variation in the gut metabolome of black howler monkeys (
Alouatta pigra ) to determine whether those variations are associated with differences in gut microbiome composition and nutrient intake, and if plasticity in the gut microbiome buffers shortfalls in energy or nutrient intake. We integrated data on the metabolome of 81 faecal samples from 16 individuals collected across three distinct seasons with gut microbiome, nutrient intake and plant metabolite consumption data from the same period. Faecal metabolite profiles differed significantly between seasons and were strongly associated with changes in plant metabolite consumption. However, microbial community composition and faecal metabolite composition were not strongly associated. Additionally, the connectivity and stability of faecal metabolome networks varied seasonally, with network connectivity being highest during the dry, fruit‐dominated season when black howler monkey diets were calorically and nutritionally constrained. Network stability was highest during the dry, leaf‐dominated season when most nutrients were being consumed at intermediate rates. Our results suggest that the gut microbiome buffers seasonal variation in dietary intake, and that the buffering effect is most limited when host diet becomes calorically or nutritionally restricted.