skip to main content


Title: NMDAR-dependent long-term depression is associated with increased short term plasticity through autophagy mediated loss of PSD-95
Abstract Long-term depression (LTD) of synaptic strength can take multiple forms and contribute to circuit remodeling, memory encoding or erasure. The generic term LTD encompasses various induction pathways, including activation of NMDA, mGlu or P2X receptors. However, the associated specific molecular mechanisms and effects on synaptic physiology are still unclear. We here compare how NMDAR- or P2XR-dependent LTD affect synaptic nanoscale organization and function in rodents. While both LTDs are associated with a loss and reorganization of synaptic AMPARs, only NMDAR-dependent LTD induction triggers a profound reorganization of PSD-95. This modification, which requires the autophagy machinery to remove the T19-phosphorylated form of PSD-95 from synapses, leads to an increase in AMPAR surface mobility. We demonstrate that these post-synaptic changes that occur specifically during NMDAR-dependent LTD result in an increased short-term plasticity improving neuronal responsiveness of depressed synapses. Our results establish that P2XR- and NMDAR-mediated LTD are associated to functionally distinct forms of LTD.  more » « less
Award ID(s):
1707356 2014862
NSF-PAR ID:
10250506
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. N-methyl-d-aspartate receptors (NMDARs) are fundamental coincidence detectors of synaptic activity necessary for the induction of synaptic plasticity and synapse stability. Adjusting NMDAR synaptic content, whether by receptor insertion or lateral diffusion between extrasynaptic and synaptic compartments, could play a substantial role defining the characteristics of the NMDAR-mediated excitatory postsynaptic current (EPSC), which in turn would mediate the ability of the synapse to undergo plasticity. Lateral NMDAR movement has been observed in dissociated neurons; however, it is currently unclear whether NMDARs are capable of lateral surface diffusion in hippocampal slices, a more physiologically relevant environment. To test for lateral mobility in rat hippocampal slices, we rapidly blocked synaptic NMDARs using MK-801, a use-dependent and irreversible NMDAR blocker. Following a 5-min washout period, we observed a strong recovery of NMDAR-mediated responses. The degree of the observed recovery was proportional to the amount of induced blockade, independent of levels of intracellular calcium, and mediated primarily by GluN2B-containing NMDA receptors. These results indicate that lateral diffusion of NMDARs could be a mechanism by which synapses rapidly adjust parameters to fine-tune synaptic plasticity. NEW & NOTEWORTHY N-methyl-d-aspartate-type glutamate receptors (NMDARs) have always been considered stable components of synapses. We show that in rat hippocampal slices synaptic NMDARs are in constant exchange with extrasynaptic receptors. This exchange of receptors is mediated primarily by NMDA receptors containing GluN2B, a subunit necessary to undergo synaptic plasticity. Thus this lateral movement of synaptic receptors allows synapses to rapidly regulate the total number of synaptic NMDARs with potential consequences for synaptic plasticity. 
    more » « less
  2. Abstract

    Synapses contain hundreds of distinct proteins whose heterogeneous expression levels are determinants of synaptic plasticity and signal transmission relevant to a range of diseases. Here, we use diffusible nucleic acid imaging probes to profile neuronal synapses using multiplexed confocal and super-resolution microscopy. Confocal imaging is performed using high-affinity locked nucleic acid imaging probes that stably yet reversibly bind to oligonucleotides conjugated to antibodies and peptides. Super-resolution PAINT imaging of the same targets is performed using low-affinity DNA imaging probes to resolve nanometer-scale synaptic protein organization across nine distinct protein targets. Our approach enables the quantitative analysis of thousands of synapses in neuronal culture to identify putative synaptic sub-types and co-localization patterns from one dozen proteins. Application to characterize synaptic reorganization following neuronal activity blockade reveals coordinated upregulation of the post-synaptic proteins PSD-95, SHANK3 and Homer-1b/c, as well as increased correlation between synaptic markers in the active and synaptic vesicle zones.

     
    more » « less
  3. null (Ed.)
    The cell adhesion molecule neuroligin2 (NLGN2) regulates GABAergic synapse development, but its role inneural circuit function in the adult hippocampus is unclear. We investigated GABAergic synapses and hippo-campus-dependent behaviors following viral-vector-mediated overexpression of NLGN2. Transducing hippo-campal neurons with AAV-NLGN2 increased neuronal expression of NLGN2 and membrane localization ofGABAergic postsynaptic proteins gephyrin and GABAARγ2, and presynaptic vesicular GABA transporter protein(VGAT) suggesting trans-synaptic enhancement of GABAergic synapses. In contrast, glutamatergic postsynapticdensity protein-95 (PSD-95) and presynaptic vesicular glutamate transporter (VGLUT) protein were unaltered.Moreover, AAV-NLGN2 significantly increased parvalbumin immunoreactive (PV+) synaptic boutons co-loca-lized with postsynaptic gephyrin+puncta. Furthermore, these changes were demonstrated to lead to cognitiveimpairments as shown in a battery of hippocampal-dependent mnemonic tasks and social behaviors. 
    more » « less
  4. null (Ed.)
    Our social relationships determine our health and well-being. In rodent models, there is now strong support for the rewarding properties of aggressive or assertive behaviors to be critical for the expression and development of adaptive social relationships, buffering from stress and protecting from the development of psychiatric disorders such as depression. However, due to the false belief that aggression is not a part of the normal repertoire of social behaviors displayed by females, almost nothing is known about the neural mechanisms mediating the rewarding properties of aggression in half the population. In the following study, using Syrian hamsters as a well-validated and translational model of female aggression, we investigated the effects of aggressive experience on the expression of markers of postsynaptic structure (PSD-95, Caskin I) and excitatory synaptic transmission (GluA1, GluA2, GluA4, NR2A, NR2B, mGluR1a, and mGluR5) in the nucleus accumbens (NAc), caudate putamen and prefrontal cortex. Aggressive experience resulted in an increase in PSD-95, GluA1 and the dimer form of mGluR5 specifically in the NAc 24 h following aggressive experience. There was also an increase in the dimer form of mGluR1a 1 week following aggressive experience. Aggressive experience also resulted in an increase in the strength of the association between these postsynaptic proteins and glutamate receptors, supporting a common mechanism of action. In addition, 1 week following aggressive experience there was a positive correlation between the monomer of mGluR5 and multiple AMPAR and NMDAR subunits. In conclusion, we provide evidence that aggressive experience in females results in an increase in the expression of postsynaptic density, AMPARs and group I metabotropic glutamate receptors, and an increase in the strength of the association between postsynaptic proteins and glutamate receptors. This suggests that aggressive experience may result in an increase in excitatory synaptic transmission in the NAc, potentially encoding the rewarding and behavioral effects of aggressive interactions. 
    more » « less
  5. Artificial synaptic devices made from natural biomaterials capable of emulating functions of biological synapses, such as synaptic plasticity and memory functions, are desirable for the construction of brain-inspired neuromorphic computing systems. The metal/dielectric/metal device structure is analogous to the pre-synapse/synaptic cleft/post-synapse structure of the biological neuron, while using natural biomaterials promotes ecologically friendly, sustainable, renewable, and low-cost electronic devices. In this work, artificial synaptic devices made from honey mixed with carbon nanotubes, honey-carbon nanotube (CNT) memristors, were investigated. The devices emulated spike-timing-dependent plasticity, with synaptic weight as high as 500%, and demonstrated a paired-pulse facilitation gain of 800%, which is the largest value ever reported. 206-level long-term potentiation (LTP) and long-term depression (LTD) were demonstrated. A conduction model was applied to explain the filament formation and dissolution in the honey-CNT film, and compared to the LTP/LTD mechanism in biological synapses. In addition, the short-term and long-term memory behaviors were clearly demonstrated by an array of 5 × 5 devices. This study shows that the honey-CNT memristor is a promising artificial synaptic device technology for applications in sustainable neuromorphic computing.

     
    more » « less