skip to main content

This content will become publicly available on December 1, 2022

Title: Presynaptic endoplasmic reticulum regulates short-term plasticity in hippocampal synapses
Abstract Short-term plasticity preserves a brief history of synaptic activity that is communicated to the postsynaptic neuron. This is primarily regulated by a calcium signal initiated by voltage dependent calcium channels in the presynaptic terminal. Imaging studies of CA3-CA1 synapses reveal the presence of another source of calcium, the endoplasmic reticulum (ER) in all presynaptic terminals. However, the precise role of the ER in modifying STP remains unexplored. We performed in-silico experiments in synaptic geometries based on reconstructions of the rat CA3-CA1 synapses to investigate the contribution of ER. Our model predicts that presynaptic ER is critical in generating the observed short-term plasticity profile of CA3-CA1 synapses and allows synapses with low release probability to operate more reliably. Blocking the ER lowers facilitation in a manner similar to what has been previously characterized in animal models of Alzheimer’s disease and underscores the important role played by presynaptic stores in normal function.
Authors:
; ; ; ;
Award ID(s):
1707356 2014862
Publication Date:
NSF-PAR ID:
10250507
Journal Name:
Communications Biology
Volume:
4
Issue:
1
ISSN:
2399-3642
Sponsoring Org:
National Science Foundation
More Like this
  1. Spike-timing–dependent plasticity (STDP) is considered as a primary mechanism underlying formation of new memories during learning. Despite the growing interest in activity-dependent plasticity, it is still unclear whether synaptic plasticity rules inferred from in vitro experiments are correct in physiological conditions. The abnormally high calcium concentration used in in vitro studies of STDP suggests that in vivo plasticity rules may differ significantly from in vitro experiments, especially since STDP depends strongly on calcium for induction. We therefore studied here the influence of extracellular calcium on synaptic plasticity. Using a combination of experimental (patch-clamp recording and Ca2+imaging at CA3-CA1 synapses) andmore »theoretical approaches, we show here that the classic STDP rule in which pairs of single pre- and postsynaptic action potentials induce synaptic modifications is not valid in the physiological Ca2+range. Rather, we found that these pairs of single stimuli are unable to induce any synaptic modification in 1.3 and 1.5 mM calcium and lead to depression in 1.8 mM. Plasticity can only be recovered when bursts of postsynaptic spikes are used, or when neurons fire at sufficiently high frequency. In conclusion, the STDP rule is profoundly altered in physiological Ca2+, but specific activity regimes restore a classical STDP profile.

    « less
  2. Synapses change on multiple timescales, ranging from milliseconds to minutes, due to a combination of both short- and long-term plasticity. Here we develop an extension of the common generalized linear model to infer both short- and long-term changes in the coupling between a pre- and postsynaptic neuron based on observed spiking activity. We model short-term synaptic plasticity using additive effects that depend on the presynaptic spike timing, and we model long-term changes in both synaptic weight and baseline firing rate using point process adaptive smoothing. Using simulations, we first show that this model can accurately recover time-varying synaptic weights (1)more »for both depressing and facilitating synapses, (2) with a variety of long-term changes (including realistic changes, such as due to STDP), (3) with a range of pre and postsynaptic firing rates, and (4) for both excitatory and inhibitory synapses. We then apply our model to two experimentally recorded putative synaptic connections. We find that simultaneously tracking fast changes in synaptic weights, slow changes in synaptic weights, and unexplained variations in baseline firing is essential. Omitting any one of these factors can lead to spurious inferences for the others. Altogether, this model provides a flexible framework for tracking short- and long-term variation in spike transmission.« less
  3. The vertical lobe (VL) in the octopus brain plays an essential role in its sophisticated learning and memory. Early anatomical studies suggested that the VL is organized in a “fan-out fan-in” connectivity matrix comprising only three morphologically identified neuron types; input axons from the superior frontal lobe (SFL) innervating en passant millions of small amacrine interneurons (AMs) which converge sharply onto large VL output neurons (LNs). Recent physiological studies confirmed the feedforward excitatory connectivity: a glutamatergic synapse at the first SFL-to-AM synaptic layer and a cholinergic AM-to-LNs synapse. SFL-to-AMs synapses show a robust hippocampal-like activity-dependent long-term potentiation (LTP) of transmittermore »release. 5-HT, octopamine, dopamine, and nitric oxide modulate short- and long-term VL synaptic plasticity. Here we present a comprehensive histolabeling study to better characterize the neural elements in the VL. We generally confirmed glutamatergic SFLs and cholinergic AMs. Intense labeling for NOS activity in the AMs neurites fitted with the NO-dependent presynaptic LTP mechanism at the SFL-to-AM synapse. New discoveries here reveal more heterogeneity of the VL neurons than previously thought. GABAergic AMs suggest a subpopulation of inhibitory interneurons in the first input layer. Clear GABA labeling in the cell bodies of LNs supported an inhibitory VL output yet the LNs co-expressed FMRFamide-like neuropeptides suggesting an additional neuromodulatory role of the VL output. Furthermore, a group of LNs was glutamatergic. A new cluster of cells organized in a “deep nucleus” showed rich catecholaminergic labeling and may play a role in intrinsic neuromodulation. In situ hybridization and immunolabeling allowed characterization and localization of a rich array of neuropeptides and neuromodulators, likely involved in reward/punishment signals. This analysis of the fast transmission system, together with the newly found cellular elements helps integrate behavioral, physiological, pharmacological, and connectome findings into a more comprehensive understanding of an efficient learning and memory network.« less
  4. An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast,more »control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.« less
  5. A considerable amount of energy is expended following presynaptic activity to regenerate electrical polarization and maintain efficient release and recycling of neurotransmitter. Mitochondria are the major suppliers of neuronal energy, generating ATP via oxidative phosphorylation. However, the specific utilization of energy from cytosolic glycolysis rather than mitochondrial respiration at the presynaptic terminal during synaptic activity remains unclear and controversial. We use a synapse specialized for high-frequency transmission in mice, the calyx of Held, to test the sources of energy used to maintain energy during short activity bursts (<1 s) and sustained neurotransmission (30–150 s). We dissect the role of presynaptic glycolysis versusmore »mitochondrial respiration by acutely and selectively blocking these ATP-generating pathways in a synaptic preparation where mitochondria and synaptic vesicles are prolific, under near-physiological conditions. Surprisingly, if either glycolysis or mitochondrial ATP production is intact, transmission during repetitive short bursts of activity is not affected. In slices from young animals before the onset of hearing, where the synapse is not yet fully specialized, both glycolytic and mitochondrial ATP production are required to support sustained, high-frequency neurotransmission. In mature synapses, sustained transmission relies exclusively on mitochondrial ATP production supported by bath lactate, but not glycolysis. At both ages, we observe that action potential propagation begins to fail before defects in synaptic vesicle recycling. Our data describe a specific metabolic profile to support high-frequency information transmission at the mature calyx of Held, shifting during postnatal synaptic maturation from glycolysis to rely on monocarboxylates as a fuel source. NEW & NOTEWORTHY We dissect the role of presynaptic glycolysis versus mitochondrial respiration in supporting high-frequency neurotransmission, by acutely blocking these ATP-generating pathways at a synapse tuned for high-frequency transmission. We find that massive energy expenditure is required to generate failure when only one pathway is inhibited. Action potential propagation is lost before impaired synaptic vesicle recycling. Synaptic transmission is exclusively dependent on oxidative phosphorylation in mature synapses, indicating presynaptic glycolysis may be dispensable for ATP maintenance.« less