skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physics at the Molecular and Cellular Level (P@MCL): A New Curriculum for Introductory Physics
ABSTRACT In this article, I describe a new curriculum for introductory physics for the life sciences, a 2-semester sequence usually required of all biology majors. Because biology-related applications on the macroscale are complex and require mathematics beyond introductory calculus, the focus is entirely on applications from molecular and cellular biology. Topics that are more relevant for engineering have been removed, and topics relevant to biology have been added. The curriculum is designed around 2 main themes: diffusion and electric dipoles. Diffusion illustrates the concepts of conservation of momentum and energy and provides the framework for introducing entropy from the perspective of statistical mechanics. Electric dipoles illustrate the basic concepts of electromagnetic theory and provide the framework for understanding light waves and light interactions with biomolecules. These themes are supported by small computational activities to help students understand the physics without advanced mathematics. This curriculum has been piloted over the past 4 years at Michigan State University and should be applicable to many colleges and universities.  more » « less
Award ID(s):
1817307
PAR ID:
10250575
Author(s) / Creator(s):
Date Published:
Journal Name:
The Biophysicist
Volume:
2
Issue:
1
ISSN:
2578-6970
Page Range / eLocation ID:
30 to 39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Concepts covered in introductory electricity and magnetism such as electric and magnetic field vectors, solenoids, and electromagnetic waves are difficult concepts for students to visualize. Part of this difficulty may be due to the representation of three-dimensional objects on the two-dimensional planes of course textbooks and classroom whiteboards. The use of two-dimensional platforms limits the visualization of phenomena such as the vector field of a point charge or test charges traveling in the three-dimensional space of an electric field. In addition, working in two dimensions may add to students’ difficulties orienting their body correctly to use the right-hand rule when determining the direction of a magnetic field. These difficulties in visualization may limit the conceptual understanding of these fundamental topics. To promote conceptual understanding of electromagnetism we are cyclically developing and researching three spatial computing 3D environments covering electric fields, magnetic fields and electromagnetic waves. Each environment will be developed and tested in both augmented and virtual reality. The first of our environments, the electric field, has been built and tested in augmented reality (AR) with introductory physics students in the Fall 2023 semester. Our study is currently in phase IV of the National Science Foundation’s Design and Development Cycle. Data collected during phase II is being analyzed to support revision to the environment as well as data collection protocols. This article will outline findings from qualitative data gathered during the AR experience as well as during student post interviews following participation in the electric field space. These findings are characterized and then responded to with recommendations for the design team regarding content and testing procedures. In what follows, we first present a framework listing current knowledge regarding students' difficulties learning electric fields and how these guided our design of this electric field augmented reality environment. We next present themes that emerged from discussions during the experience as well as the post interviews. We conclude with suggestions to inform our second round of environmental design. 
    more » « less
  2. Student experiences learning chemistry have been well studied in chemistry courses but less so in biology courses. Chemistry concepts are foundational to introductory biology courses, and student experiences learning chemistry concepts may impact their overall course experiences and subsequent student outcomes. In this study, we asked undergraduate students enrolled in introductory biology courses at a public R1 institution an open-response question asking how their experiences learning chemistry topics affected their identities as biologists. We used thematic analysis to identify common ideas in their responses. We found that while almost half of student respondents cited learning chemistry as having positive impacts on their experiences learning biology, students who struggled with chemistry topics were significantly more likely to have negative experiences learning biology. We also found significant relationships between prior chemistry preparation, student background, and the likelihood of students struggling with chemistry and negative experiences learning biology. These findings emphasize the impact of learning specific content on student psychosocial metrics and suggest areas for biology educators to focus on to support learning and alleviate student stress in introductory biology. 
    more » « less
  3. Mathematical reasoning skills are a desired outcome of introductory physics courses, particularly calculus- based courses. Signed quantities are ubiquitous in physics, and sign carries important and varied meanings. Unlike physics experts, novices struggle with the many roles signed numbers can play in physics contexts; recent evidence shows that unresolved struggle carries over to subsequent physics courses. Mathematics edu- cation research literature documents cognitive challenges of conceptualizing negative numbers as mathematical objects—for experts, historically, and for novices as they learn. We add to the small but growing body of physics education research that focuses on student reasoning about signed quantities and the role of the negative sign in models. This paper contributes a framework for categorizing the various natures of the negative sign in physics contexts, modeled on the established natures of negativity in algebra from the mathematics education research community. We hope such a framework can facilitate innovation in methods and curricular activities to catalyze a deeper mathematical conceptualization of signed quantities in the introductory courses and beyond. 
    more » « less
  4. While a standard calculus course may include some neatly-packaged applications of rate of change or Riemann sums to problems of kinematics, majors from biology and medicine are in urgent need of mathematics taught from a modeling perspective. Yet, the art of modeling is scarce in tertiary mathematics classrooms in part because, much like in schools, many mathematicians may lack (a) the relevant real-world concepts (beyond simple physics and engineering) (b) knowledge of the mathematics from a modeling perspective or (c) confidence to change their classroom practices. To remedy this, we trialed a professional development workshop for faculty to learn to mathematically model biological contexts with dynamical systems. The workshop enacted the field’s recommendations for professional development with teachers. We observed gains in faculty’s self-reported comfort with mathematics and biology concepts and teaching mathematics with a modeling perspective. 
    more » « less
  5. Three-dimensional learning (3DL) is an approach to science instruction that was developed for K-12 science education and that can provide guidance for improving undergraduate physics laboratories. In this paper, we describe efforts to comprehensively integrate 3DL into a sequence of undergraduate introductory physics for life sciences (IPLS) laboratory courses. This paper is tailored for introductory physics faculty interested in advancing their course's learning goals by simultaneously engaging students in experimental practices, scientific reasoning, and conceptual knowledge. We first review how several well-known laboratory curricula are already implicitly aligned with 3DL. We then describe our IPLS course sequence and show how each 3DL dimension—science and engineering practices, disciplinary core ideas, and crosscutting concepts—is integrated throughout the curriculum. To support implementation, we provide samples of our course documentation, a detailed account of our 3DL integration efforts, a guide to training and supporting teaching and learning assistants in a 3DL course, and a sample set of activities to guide students in participating in 3DL instruction in the supplementary material. 
    more » « less