skip to main content

Title: Increased expression of antibiotic-resistance genes in biofilm communities upon exposure to cetyltrimethylammonium bromide (CTAB) and other stress conditions
Quaternary ammonium compounds (QAC, e.g., cetyltrimethylammonium bromide, (CTAB)) are widely used as surfactants and disinfectants. QAC already are commonly found in wastewaters, and their concentration could increase, since QAC are recommended to inactivate the SARS-CoV-2 (COVID-19) virus. Exposure of bacteria to QAC can lead to proliferation of antibiotic resistance genes (ARG). In particular, O2-based membrane biofilm reactors (O2-MBfRs) achieved excellent CTAB biodegradation, but ARG increased in their biofilms. Here, we applied meta-transcriptomic analyses to assess the impacts of CTAB exposure and operating conditions on microbial community's composition and ARG expression in the O2-MBfRs. Two opportunistic pathogens, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, dominated the microbial communities and were associated with the presence of ARG. Operating conditions that imposed stress on the biofilms, i.e., limited supplies of O2 and nitrogen or a high loading of CTAB, led to large increases in ARG expression, particularly for genes conferring antibiotic-target protection. Important within the efflux pumps was the Resistance-Nodulation-Division (RND) family, which may have been active in exporting CTAB from cells. Oxidative stress appeared to be the key factor that triggered ARG proliferation by selecting intrinsically resistant species and accentuating the expression of ARG. Our findings suggest that means to mitigate the spread of more » ARG, such as shown here in a O2-based membrane biofilm reactor, need to consider the impacts of stressors, including QAC exposure and stressful operating conditions. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1702445
Publication Date:
NSF-PAR ID:
10250663
Journal Name:
Science of the total environment
Volume:
765
ISSN:
1879-1026
Sponsoring Org:
National Science Foundation
More Like this
  1. Antimicrobial resistance is a well-documented public health concern. The role that drinking water distribution pipes have as sources of antibiotic resistance genes (ARGs) is not well known. Metals are a known stressor for antibiotic resistance development, implying that aging metal-pipe infrastructure could be a source of ARGs. The objective of this study was to determine if ARGs, metal resistance genes (MRGs), and intI 1 were pervasive across various pipe biofilm sample types (biomass surfaces, pipe surfaces, corrosion tubercles, and under corrosion tubercles) and if the resistance genes associated with particular microbial taxa. Eight sample types in triplicate ( n = 24) were taken from inside a >100 year-old, six ft. section of a full-scale chloraminated cast iron drinking water main. Droplet digital PCR (ddPCR) was employed as a novel approach to quantify ARGs in pipes from full-scale drinking water distribution systems (DWDS) because it yielded higher detection frequencies than quantitative PCR (qPCR). Illumina sequencing was employed to characterize the microbial community based on 16S rRNA genes. ARGs and MRGs were detected in all 24 pipe samples. Every sample contained targeted genes. Interestingly, the mean absolute abundances of ARGs and MRGs only varied by approximately one log value across sample types,more »but the mean relative abundances (copy numbers normalized to 16S rRNA genes) varied by over two log values. The ARG and MRGs concentrations were not significantly different between sample types, despite significant changes in dominant microbial taxa. The most abundant genera observed in the biofilm communities were Mycobacterium (0.2–70%), and β-lactam resistance genes bla TEM , bla SHV , and the integrase gene of class 1 integrons ( intI 1) were positively correlated with Mycobacterium . The detection of ARGs, MRGs, and class 1 integrons across all sample types within the pipe indicates that pipes themselves can serve as sources for ARGs in DWDS. Consequently, future work should investigate the role of pipe materials as well as corrosion inhibitors to determine how engineering decisions can mitigate ARGs in drinking water that stem from pipe materials.« less
  2. Elkins, Christopher A. (Ed.)
    ABSTRACT Enterococcus bacteria inhabit human and soil environments that show a wide range of pH values. Strains include commensals as well as antibiotic-resistant pathogens. We investigated the adaptation to pH stress in E. faecalis OG1RF by conducting experimental evolution under acidic (pH 4.8), neutral pH (pH 7.0), and basic (pH 9.0) conditions. A serial planktonic culture was performed for 500 generations and in a high-pH biofilm culture for 4 serial bead transfers. Nearly all of the mutations led to nonsynonomous codons, indicating adaptive selection. All of the acid-adapted clones from the planktonic culture showed a mutation in fusA (encoding elongation factor G). The acid-adapted fusA mutants had a trade-off of decreased resistance to fusidic acid (fusidate). All of the base-adapted clones from the planktonic cultures as well as some from the biofilm-adapted cultures showed mutations that affected the Pst phosphate ABC transporter ( pstA , pstB , pstB2 , pstC ) and pyrR (pyrimidine biosynthesis regulator/uracil phosphoribosyltransferase). The biofilm cultures produced small-size colonies on brain heart infusion agar. These variants each contained a single mutation in pstB2 , pstC , or pyrR . The pst and pyrR mutants outgrew the ancestral strain at pH 9.2, with a trade-off of lowermore »growth at pH 4.8. Additional genes that had a mutation in multiple clones that evolved at high pH (but not at low pH) include opp1BCDF (oligopeptide ABC transporter), ccpA (catabolite control protein A), and ftsZ (septation protein). Overall, the experimental evolution of E. faecalis showed a strong pH dependence, favoring the fusidate-sensitive elongation factor G modification at low pH and the loss of phosphate transport genes at high pH. IMPORTANCE E. faecalis bacteria are found in dental biofilms, where they experience low pH as a result of fermentative metabolism. Thus, the effect of pH on antibiotic resistance has clinical importance. The loss of fusidate resistance is notable for OG1RF strains in which fusidate resistance is assumed to be a stable genetic marker. In endodontal infections, enterococci can resist calcium hydroxide therapy that generates extremely high pH values. In other environments, such as the soil and plant rhizosphere, enterococci experience acidification that is associated with climate change. Thus, the pH modulation of natural selection in enterococci is important for human health as well as for understanding soil environments.« less
  3. The rise in bacterial resistance to common antibiotics has raised an increased need for alternative treatment strategies. The natural antibacterial product, 18β-glycyrrhetinic acid (GRA) has shown efficacy against community-associated methicillin-resistant Staphylococcus aureus (MRSA), although its interactions against planktonic and biofilm modes of growth remain poorly understood. This investigation utilized biochemical and metabolic approaches to further elucidate the effects of GRA on MRSA. Prolonged exposure of planktonic MRSA cell cultures to GRA resulted in increased production of staphyloxanthin, a pigment known to exhibit antioxidant and membrane-stabilizing functions. Then, 1D 1H NMR analyses of intracellular metabolite extracts from MRSA treated with GRA revealed significant changes in intracellular polar metabolite profiles, including increased levels of succinate and citrate, and significant reductions in several amino acids, including branch chain amino acids. These changes reflect the MRSA response to GRA exposure, including potentially altering its membrane composition, which consumes branched chain amino acids and leads to significant energy expenditure. Although GRA itself had no significant effect of biofilm viability, it seems to be an effective biofilm disruptor. This may be related to interference with cell–cell aggregation, as treatment of planktonic MRSA cultures with GRA leads to a significant reduction in micro-aggregation. The dispersive nature ofmore »GRA on MRSA biofilms may prove valuable for treatment of such infections and could be used to increase susceptibility to complementary antibiotic therapeutics.« less
  4. O'Toole, George (Ed.)
    ABSTRACT Myxococcus xanthus copes with starvation by producing fruiting bodies filled with dormant and stress-resistant spores. Here, we aimed to better define the gene regulatory network associated with Nla28, a transcriptional activator/enhancer binding protein (EBP) and a key regulator of the early starvation response. Previous work showed that Nla28 directly regulates EBP genes that are important for fruiting body development. However, the Nla28 regulatory network is likely to be much larger because hundreds of starvation-induced genes are downregulated in a nla28 mutant strain. To identify candidates for direct Nla28-mediated transcription, we analyzed the downregulated genes using a bioinformatics approach. Nine potential Nla28 target promoters (29 genes) were discovered. The results of in vitro promoter binding assays, coupled with in vitro and in vivo mutational analyses, suggested that the nine promoters along with three previously identified EBP gene promoters were indeed in vivo targets of Nla28. These results also suggested that Nla28 used tandem, imperfect repeats of an 8-bp sequence for promoter binding. Interestingly, eight of the new Nla28 target promoters were predicted to be intragenic. Based on mutational analyses, the newly identified Nla28 target loci contained at least one gene that was important for starvation-induced development. Most of these locimore »contained genes predicted to be involved in metabolic or defense-related functions. Using the consensus Nla28 binding sequence, bioinformatics, and expression profiling, 58 additional promoters and 102 genes were tagged as potential Nla28 targets. Among these putative Nla28 targets, functions, such as regulatory, metabolic, and cell envelope biogenesis, were assigned to many genes. IMPORTANCE In bacteria, starvation leads to profound changes in behavior and physiology. Some of these changes have economic and health implications because the starvation response has been linked to the formation of biofilms, virulence, and antibiotic resistance. To better understand how starvation contributes to changes in bacterial physiology and resistance, we identified the putative starvation-induced gene regulatory network associated with Nla28, a transcriptional activator from the bacterium Myxoccocus xanthus . We determined the mechanism by which starvation-responsive genes were activated by Nla28 and showed that several of the genes were important for the formation of a highly resistant cell type.« less
  5. Pseudomonas aeruginosais an opportunistic pathogen that forms antibiotic-resistant biofilms, which facilitate chronic infections in immunocompromised hosts. We have previously shown thatP. aeruginosasecretes outer-membrane vesicles that deliver a small RNA to human airway epithelial cells (AECs), in which it suppresses the innate immune response. Here, we demonstrate that interdomain communication through small RNA–containing membrane vesicles is bidirectional and that microRNAs (miRNAs) in extracellular vesicles (EVs) secreted by human AECs regulate protein expression, antibiotic sensitivity, and biofilm formation byP. aeruginosa. Specifically, human EVs deliver miRNA let-7b-5p toP. aeruginosa, which systematically decreases the abundance of proteins essential for biofilm formation, including PpkA and ClpV1-3, and increases the ability of beta-lactam antibiotics to reduce biofilm formation by targeting the beta-lactamase AmpC. Let-7b-5p is bioinformatically predicted to target not only PpkA, ClpV1, and AmpC inP. aeruginosabut also the corresponding orthologs inBurkholderia cenocepacia, another notorious opportunistic lung pathogen, suggesting that the ability of let-7b-5p to reduce biofilm formation and increase beta-lactam sensitivity is not limited toP. aeruginosa. Here, we provide direct evidence for transfer of miRNAs in EVs secreted by eukaryotic cells to a prokaryote, resulting in subsequent phenotypic alterations in the prokaryote as a result of this interdomain communication. Since let-7–family miRNAs are in clinicalmore »trials to reduce inflammation and because chronicP. aeruginosalung infections are associated with a hyperinflammatory state, treatment with let-7b-5p and a beta-lactam antibiotic in nanoparticles or EVs may benefit patients with antibiotic-resistantP. aeruginosainfections.

    « less