skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1702445

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Quaternary ammonium compounds (QAC, e.g., cetyltrimethylammonium bromide, (CTAB)) are widely used as surfactants and disinfectants. QAC already are commonly found in wastewaters, and their concentration could increase, since QAC are recommended to inactivate the SARS-CoV-2 (COVID-19) virus. Exposure of bacteria to QAC can lead to proliferation of antibiotic resistance genes (ARG). In particular, O2-based membrane biofilm reactors (O2-MBfRs) achieved excellent CTAB biodegradation, but ARG increased in their biofilms. Here, we applied meta-transcriptomic analyses to assess the impacts of CTAB exposure and operating conditions on microbial community's composition and ARG expression in the O2-MBfRs. Two opportunistic pathogens, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, dominated the microbial communities and were associated with the presence of ARG. Operating conditions that imposed stress on the biofilms, i.e., limited supplies of O2 and nitrogen or a high loading of CTAB, led to large increases in ARG expression, particularly for genes conferring antibiotic-target protection. Important within the efflux pumps was the Resistance-Nodulation-Division (RND) family, which may have been active in exporting CTAB from cells. Oxidative stress appeared to be the key factor that triggered ARG proliferation by selecting intrinsically resistant species and accentuating the expression of ARG. Our findings suggest that means to mitigate the spread of ARG, such as shown here in a O2-based membrane biofilm reactor, need to consider the impacts of stressors, including QAC exposure and stressful operating conditions. 
    more » « less