skip to main content

Title: Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers
Abstract. Iodine species are important in the marine atmosphere foroxidation and new-particle formation. Understanding iodine chemistry andiodine new-particle formation requires high time resolution, highsensitivity, and simultaneous measurements of many iodine species. Here, wedescribe the application of a bromide chemical ionization mass spectrometer(Br-CIMS) to this task. During the iodine oxidation experiments in theCosmics Leaving OUtdoor Droplets (CLOUD) chamber, we have measured gas-phaseiodine species and sulfuric acid using two Br-CIMS, one coupled to aMulti-scheme chemical IONization inlet (Br-MION-CIMS) and the other to aFilter Inlet for Gasses and AEROsols inlet (Br-FIGAERO-CIMS). From offlinecalibrations and intercomparisons with other instruments, we havequantified the sensitivities of the Br-MION-CIMS to HOI, I2, andH2SO4 and obtained detection limits of 5.8 × 106,3.8 × 105, and 2.0 × 105 molec. cm−3,respectively, for a 2 min integration time. From binding energycalculations, we estimate the detection limit for HIO3 to be1.2 × 105 molec. cm−3, based on an assumption of maximumsensitivity. Detection limits in the Br-FIGAERO-CIMS are around 1 order ofmagnitude higher than those in the Br-MION-CIMS; for example, the detectionlimits for HOI and HIO3 are 3.3 × 107 and 5.1 × 106 molec. cm−3, respectively. Our comparisons of the performanceof the MION inlet and the FIGAERO inlet show that bromide chemicalionization mass spectrometers using either atmospheric pressure or reducedpressure interfaces are well-matched to measuring iodine species andsulfuric acid in marine more » environments. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1801280 1801897 1801574
Publication Date:
NSF-PAR ID:
10250763
Journal Name:
Atmospheric Measurement Techniques
Volume:
14
Issue:
6
Page Range or eLocation-ID:
4187 to 4202
ISSN:
1867-8548
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. A new ion source (IS) utilizing vacuum ultraviolet (VUV) light is developed and characterized for use with iodide–chemical ionization massspectrometers (I−-CIMS). The VUV-IS utilizes a compact krypton lamp that emits light at two wavelengths corresponding to energies of∼10.030 and 10.641 eV. The VUV light photoionizes either methyl iodide (ionization potential, IP = 9.54 ± 0.02 eV)or benzene (IP = 9.24378 ± 0.00007 eV) to form cations and photoelectrons. The electrons react with methyl iodide to formI−, which serves as the reagent ion for the CIMS. The VUV-IS is characterized by measuring the sensitivity of a quadrupole CIMS (Q-CIMS) toformic acid, molecular chlorine, and nitryl chloride under a variety of flow and pressure conditions. The sensitivity of the Q-CIMS, with theVUV-IS, reached up to ∼700 Hz pptv−1, with detection limits of less than 1 pptv for a 1 min integration period. Thereliability of the Q-CIMS with a VUV-IS is demonstrated with data from a month-long ground-based field campaign. The VUV-IS is further tested byoperation on a high-resolution time-of-flight CIMS (TOF-CIMS). Sensitivities greater than 25 Hz pptv−1 were obtained for formic acid andmolecular chlorine, which were similar to that obtained with a radioactive source. In addition, the mass spectra from sampling ambient air wascleaner with the VUV-IS on the TOF-CIMS compared to measurements using a radioactive source. These results demonstrate that the VUV lamp is a viablesubstitute for radioactivemore »ion sources on I−-CIMS systems for most applications. In addition, initial tests demonstrate that the VUV-IS canbe extended to other reagent ions by the use of VUV absorbers with low IPs to serve as a source of photoelectrons for high IP electron attachers,such as SF6-.« less
  2. Abstract. We report on the development, characterization, and fielddeployment of a fast-time-response sensor for measuring ozone (O3) andnitrogen dioxide (NO2) concentrations utilizing chemical ionizationtime-of-flight mass spectrometry (CI-ToFMS) with oxygen anion(O2-) reagent ion chemistry. Wedemonstrate that the oxygen anion chemical ionization mass spectrometer(Ox-CIMS) is highly sensitive to both O3 (180 counts s−1 pptv−1) and NO2 (97 counts s−1 pptv−1), corresponding todetection limits (3σ, 1 s averages) of 13 and 9.9 pptv,respectively. In both cases, the detection threshold is limited by themagnitude and variability in the background determination. The short-termprecision (1 s averages) is better than 0.3 % at 10 ppbv O3 and 4 %at 10 pptv NO2. We demonstrate that the sensitivity of the O3measurement to fluctuations in ambient water vapor and carbon dioxide isnegligible for typical conditions encountered in the troposphere. Theapplication of the Ox-CIMS to the measurement of O3 vertical fluxesover the coastal ocean, via eddy covariance (EC), was tested during the summer of2018 at Scripps Pier, La Jolla, CA. The observed mean ozone depositionvelocity (vd(O3)) was 0.013 cm s−1 with a campaign ensemblelimit of detection (LOD) of 0.0027 cm s−1 at the 95 % confidencelevel, from each 27 min sampling period LOD. The campaign mean and 1standard deviation range of O3 mixing ratios was 41.2±10.1 ppbv. Several fast ozone titration events from local NO emissions weresampled where unitmore »conversion of O3 to NO2 was observed,highlighting instrument utility as a total odd-oxygen (Ox=O3+NO2) sensor. The demonstrated precision, sensitivity, and timeresolution of this instrument highlight its potential for directmeasurements of O3 ocean–atmosphere and biosphere–atmosphere exchangefrom both stationary and mobile sampling platforms.« less
  3. Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter D p < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and β-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m −3 in real time. This was until nowmore »difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semi-continuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level.« less
  4. A rapid and sensitive method is described for measuring perchlorate (ClO 4 − ), chlorate (ClO 3 − ), chlorite (ClO 2 − ), bromate (BrO 3 − ), and iodate (IO 3 − ) ions in natural and treated waters using non-suppressed ion chromatography with electrospray ionization and tandem mass spectrometry (NS-IC-MS/MS). Major benefits of the NS-IC-MS/MS method include a short analysis time (12 minutes), low limits of quantification for BrO 3 − (0.10 μg L −1 ), ClO 4 − (0.06 μg L −1 ), ClO 3 − (0.80 μg L −1 ), and ClO 2 − (0.40 μg L −1 ), and compatibility with conventional LC-MS/MS instrumentation. Chromatographic separations were generally performed under isocratic conditions with a Thermo Scientific Dionex AS16 column, using a mobile phase of 20% 1 M aqueous methylamine and 80% acetonitrile. The isocratic method can also be optimized for IO 3 − analysis by including a gradient from the isocratic mobile phase to 100% 1 M aqueous methylamine. Four common anions (Cl − , Br − , SO 4 2− , and HCO 3 − /CO 3 2− ), a natural organic matter isolate (Suwannee River NOM), and several real water samples weremore »tested to examine influences of natural water constituents on oxyhalide detection. Only ClO 2 − quantification was significantly affected – by elevated chloride concentrations (>2 mM) and NOM. The method was successfully applied to quantify oxyhalides in natural waters, chlorinated tap water, and waters subjected to advanced oxidation by sunlight-driven photolysis of free available chlorine (sunlight/FAC). Sunlight/FAC treatment of NOM-free waters containing 200 μg L −1 Br − resulted in formation of up to 263 ± 35 μg L −1 and 764 ± 54 μg L −1 ClO 3 − , and up to 20.1 ± 1.0 μg L −1 and 33.8 ± 1.0 μg L −1 BrO 3 − (at pH 6 and 8, respectively). NOM strongly inhibited ClO 3 − and BrO 3 − formation, likely by scavenging reactive oxygen or halogen species. As prior work shows that the greatest benefits in applying the sunlight/FAC process for purposes of improving disinfection of chlorine-resistant microorganisms are realized in waters with lower DOC levels and higher pH, it may therefore be desirable to limit potential applications to waters containing moderate DOC concentrations ( e.g. , ∼1–2 mg C L −1 ), low Br − concentrations ( e.g. , <50 μg L −1 ), and circumneutral to moderately alkaline pH ( e.g. , pH 7–8) to strike a balance between maximizing microbial inactivation while minimizing formation of oxyhalides and other disinfection byproducts.« less
  5. Abstract. Chemical ionization mass spectrometry with the nitrate reagent ion (NO3- CIMS) was used to investigate the products of the nitrate radical(NO3) initiated oxidation of four monoterpenes in laboratory chamber experiments. α-Pinene, β-pinene, Δ-3-carene, andα-thujene were studied. The major gas-phase species produced in each system were distinctly different, showing the effect of monoterpenestructure on the oxidation mechanism and further elucidating the contributions of these species to particle formation and growth. By comparinggroupings of products based on the ratios of elements in the general formula CwHxNyOz, therelative importance of specific mechanistic pathways (fragmentation, termination, and radical rearrangement) can be assessed for eachsystem. Additionally, the measured time series of the highly oxidized reaction products provide insights into the ratio of relative production andloss rates of the high-molecular-weight products of the Δ-3-carene system. The measured effective O:C ratios of reaction products wereanticorrelated with new particle formation intensity and number concentration for each system; however, the monomer : dimer ratios of products had a smallpositive trend. Gas-phase yields of oxidation products measured by NO3- CIMS correlated with particle number concentrations for eachmonoterpene system, with the exception of α-thujene, which produced a considerable amount of low-volatility products but noparticles. Species-resolved wall loss was measured with NO3- CIMS and found to bemore »highly variable among oxidized reaction products in ourstainless steel chamber.« less