skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Asymptotically Optimal Lagrangian Priority Policy for Deadline Scheduling with Processing Rate Limits
We study the deadline scheduling problem for multiple deferrable jobs that arrive in a random manner and are to be processed before individual deadlines. The processing of the jobs is subject to a time-varying limit on the total processing rate at each stage. We formulate the scheduling problem as a restless multi-armed bandit (RMAB) problem. Relaxing the scheduling problem into multiple independent single-arm scheduling problems, we define the Lagrangian priority value as the greatest tax under which it is optimal to activate the arm, and establish the asymptotic optimality of the proposed Lagrangian priority policy for large systems. Numerical results show that the proposed Lagrangian priority policy achieves 22%-49% higher average reward than the classical Whittle index policy (that does not take into account the processing rate limits).  more » « less
Award ID(s):
1809830 1816397
PAR ID:
10250769
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
ISSN:
0018-9286
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Jobs shop Scheduling Problem (JSP) is a canonical combinatorial optimization problem that is routinely solved for a variety of industrial purposes. It models the optimal scheduling of multiple sequences of tasks, each under a fixed order of operations, in which individual tasks require exclusive access to a predetermined resource for a specified processing time. The problem is NP-hard and computationally challenging even for medium-sized instances. Motivated by the increased stochasticity in production chains, this paper explores a deep learning approach to deliver efficient and accurate approximations to the JSP. In particular, this paper proposes the design of a deep neural network architecture to exploit the problem structure, its integration with Lagrangian duality to capture the problem constraints, and a post-processing optimization to guarantee solution feasibility.The resulting method, called JSP-DNN, is evaluated on hard JSP instances from the JSPLIB benchmark library. Computational results show that JSP-DNN can produce JSP approximations of high quality at negligible computational costs. 
    more » « less
  2. We study the optimal control problem in stochastic queueing networks with a set of job dispatchers connected to a set of parallel servers with queues. Jobs arrive at the dispatchers and get routed to the servers following some routing policy. The arrival processes of jobs and the service processes of servers are stochastic with unknown arrival rates and service rates. Upon the completion of each job from dispatcherunat serversm, a random utility whose mean is unknown is obtained. We seek to design a control policy that makes routing decisions at the dispatchers and scheduling decisions at the servers to maximize the total utility obtained by the end of a finite time horizonT. The performance of policies is measured by regret, which is defined as the difference in total expected utility with respect to the optimal dynamic policy that has access to arrival rates, service rates and underlying utilities. We first show that the expected utility of the optimal dynamic policy is upper bounded byTtimes the solution to a static linear program, where the optimization variables correspond to rates of jobs from dispatchers to servers and the feasibility region is parameterized by arrival rates and service rates. We next propose a policy for the optimal control problem that is an integration of a learning algorithm and a control policy. The learning algorithm seeks to learn the optimal extreme point solution to the static linear program based on the information available in the optimal control problem. The control policy, a mixture of priority-based and Joint-the-Shortest-Queue routing at the dispatchers and priority-based scheduling at the servers, makes decisions based on the graphical structure induced by the extreme point solutions provided by the learning algorithm. We prove that our policy achieves logarithmic regret whereas application of existing techniques to the optimal control problem would lead to Ω(√T)-regret. The theoretical analysis is further complemented with simulations to evaluate the empirical performance of our policy. 
    more » « less
  3. Natural disasters, such as hurricanes, large wind and ice storms, typically require the repair of a large number of components in electricity distribution networks. Since power cannot be restored before the completion of repairs, optimally scheduling the available crews to minimize the cumulative duration of the customer interruptions reduces the harm done to the affected community. We have previously proposed approximation algorithms to schedule post-disaster repairs in electricity distribution networks with complete damage information [1]. In this paper, we extend our previous work to the case with incomplete damage information. We model this problem as scheduling a set of jobs with stochastic processing times on parallel identical machines in order to minimize the total weighted energization time. A linear programming (LP) based list scheduling policy is proposed and then analyzed in terms of theoretical performance. 
    more » « less
  4. The shortest-remaining-processing-time (SRPT) scheduling policy has been extensively studied, for more than 50 years, in single-server queues with infinitely patient jobs. Yet, much less is known about its performance in multiserver queues. In this paper, we present the first theoretical analysis of SRPT in multiserver queues with abandonment. In particular, we consider the M/GI/s+GI queue and demonstrate that, in the many-sever overloaded regime, performance in the SRPT queue is equivalent, asymptotically in steady state, to a preemptive two-class priority queue where customers with short service times (below a threshold) are served without wait, and customers with long service times (above a threshold) eventually abandon without service. We prove that the SRPT discipline maximizes, asymptotically, the system throughput, among all scheduling disciplines. We also compare the performance of the SRPT policy to blind policies and study the effects of the patience-time and service-time distributions. This paper was accepted by Baris Ata, stochastic models & simulation. 
    more » « less
  5. Due to a growing interest in deep learning applications [5], compute-intensive and long-running (hours to days) training jobs have become a significant component of datacenter workloads. A large fraction of these jobs is often exploratory, with the goal of determining the best model structure (e.g., the number of layers and channels in a convolutional neural network), hyperparameters (e.g., the learning rate), and data augmentation strategies for the target application. Notably, training jobs are often terminated early if their learning metrics (e.g., training and validation accuracy) are not converging, with only a few completing successfully. For this motivating application, we consider the problem of scheduling a set of jobs that can be terminated at predetermined checkpoints with known probabilities estimated from historical data. We prove that, in order to minimize the time to complete the first K successful jobs on a single server, optimal scheduling does not require preemption (even when preemption overhead is negligible) and provide an optimal policy; advantages of this policy are quantified through simulation. Related Work. While job scheduling has been investigated extensively in many scenarios (see [6] and [2] for a survey of recent result), most policies require that the cost of waiting times of each job be known at scheduling time; in contrast, in our setting the scheduler does not know which job will be the K-th successful job, and sojourn times of subsequent jobs do not contribute to the target metric. For example, [4, 3] minimize makespan (i.e., the time to complete all jobs) for known execution times and waiting time costs; similarly, Gittins index [1] and SR rank [7] minimize expected sojourn time of all jobs, i.e., both successfully completed jobs and jobs terminated early. Unfortunately, scheduling policies not distinguishing between these two types of jobs may favor jobs where the next stage is short and leads to early termination with high probability, which is an undesirable outcome in our applications of interest. 
    more » « less