skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discovery of New Genera Challenges the Subtribal Classification of Tok-Tok Beetles (Coleoptera: Tenebrionidae: Sepidiini)
Abstract Sepidiini is a speciose tribe of desert-inhabiting darkling beetles, which contains a number of poorly defined taxonomic groups and is in need of revision at all taxonomic levels. In this study, two previously unrecognized lineages were discovered, based on morphological traits, among the extremely speciose genera Psammodes Kirby, 1819 (164 species and subspecies) and Ocnodes Fåhraeus, 1870 (144 species and subspecies), namely the Psammodes spinosus species-group and Ocnodes humeralis species-group. In order to test their phylogenetic placement, a phylogeny of the tribe was reconstructed based on analyses of DNA sequences from six nonoverlapping genetic loci (CAD, wg, COI JP, COI BC, COII, and 28S) using Bayesian and maximum likelihood inference methods. The aforementioned, morphologically defined, species-groups were recovered as distinct and well-supported lineages within Molurina + Phanerotomeina and are interpreted as independent genera, respectively, Tibiocnodes Gearner & Kamiński gen. nov. and Tuberocnodes Gearner & Kamiński gen. nov. A new species, Tuberocnodes synhimboides Gearner & Kamiński sp. nov., is also described. Furthermore, as the recovered phylogenetic placement of Tibiocnodes and Tuberocnodes undermines the monophyly of Molurina and Phanerotomeina, an analysis of the available diagnostic characters for those subtribes is also performed. As a consequence, Phanerotomeina is considered as a synonym of the newly redefined Molurina sens. nov. Finally, spectrograms of vibrations produced by substrate tapping of two Molurina species, Toktokkus vialis (Burchell, 1822) and T. synhimboides, are presented.  more » « less
Award ID(s):
2009247 1754630
PAR ID:
10250831
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Marvaldi, Adriana
Date Published:
Journal Name:
Insect Systematics and Diversity
Volume:
5
Issue:
2
ISSN:
2399-3421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The first molecular phylogeny of the tribe Sepidiini is inferred from analyses of DNA sequence data from the following five loci (CAD, wg, COI, COII, 28S rRNA). Bayesian and maximum likelihood analyses were performed on a dataset containing 41 taxa, of which a majority represent Molurina (27) and Phanerotomeina (6). The resulting topologies were used to discuss phylogenetic placement and diagnostic characters of all of the genera representing Molurina. Within the subtribe, the results revealed paraphyly of the genus Psammodes. The P. vialis species-group, currently classified within Psammodes, was recovered as sister to all other Molurina genera. Based on this topology and morphological investigations, a new genus named Toktokkus gen. nov. is established. Within Phanerotomeina, Ocnodes is paraphyletic with regard to Tarsocnodes. In order to restore the monophyly of Ocnodes, the subgenus Chiliarchum stat. nov. is elevated to generic level. Finally, as the homology of female terminalia structures has never been fully assessed for Sepidiini, a comparative study of ovipositor morphology was conducted. As a result, this paper presents the first fully annotated ovipositors for tok-tokkie beetles. 
    more » « less
  2. Abstract Tok‐tokkies are one of the most iconic lineages within Tenebrionidae. In addition to containing some of the largest darkling beetles, this tribe is recognized for its remarkable form of sexual communication known as substrate tapping. Nevertheless, the phylogenetic relationships within the group remain poorly understood. This study investigates the usefulness of female terminalia morphology for delimiting Sepidiini and reconstructing relationships among it. Data on the structure of the ovipositors, genital tubes and spicula ventrali have been generated for >200 species representing 28 Pimeliinae tribes. This dataset was used in a comparative analysis at the subfamilial level, which resulted in recognition of several unique features of tok‐tokkie terminalia. Additionally, new features linking phenotypically challenging tribes also were recovered (Cryptochilini + Idisiini + Pimeliini). Secondly, 23 characters linked to the structure of female terminalia were defined for tok‐tok beetles. Cladistic analysis demonstrates the nonmonophyletic nature of most of the recognized subtribes. The morphological dataset was analysed separately and in combination with available molecular data (CAD, Wg, cox1, cox2, 28S). All obtained topologies were largely congruent, supporting the following changes: Palpomodina Kamiński & Gearnersubtr.n.is erected to accommodate the generaNamibomodesandPalpomodes;ArgenticrinisandBombocnodulusare transferred from Hypomelina to Molurina; 153 species and subspecies previously classified withinPsammodesare distributed over three separate genera (MariazofiaKamińskinom.n.,Piesomerastat.r.,Psammodessens.n.).Psammodes sklodowskaeKamiński & Gearnersp.n.is described. Preliminary investigation of the ovipositor ofMariazofiabasuto(Koch)comb.n.was carried out with the application of microcomputed tomography, illuminating the muscular system as a reliable reference point for recognizing homologous elements in highly modified ovipositors. 
    more » « less
  3. Abstract Recently discovered amber-preserved fossil Cicadellidae exhibit combinations of morphological traits not observed in the modern fauna and have the potential to shed new light on the evolution of this highly diverse family. To place the fossils explicitly within a phylogenetic context, representatives of five extinct genera from Cretaceous Myanmar amber, and one from Eocene Baltic amber were incorporated into a matrix comprising 229 discrete morphological characters and representatives of all modern subfamilies. Phylogenetic analyses yielded well resolved and largely congruent estimates that support the monophyly of most previously recognized cicadellid subfamilies and indicate that the treehoppers are derived from a lineage of Cicadellidae. Instability in the morphology-based phylogenies is mainly confined to deep internal splits that received low branch support in one or more analyses and also were not consistently resolved by recent phylogenomic analyses. Placement of fossil taxa is mostly stable across analyses. Three new Cretaceous leafhopper genera, Burmotettix gen. nov., Kachinella gen nov., and Viraktamathus gen. nov., consistently form a monophyletic group distinct from extant leafhopper subfamilies and are placed in Burmotettiginae subfam. nov. Extinct Cretaceous fossils previously placed in Ledrinae and Signoretiinae are recovered as sister to modern representatives of these groups. Eomegophthalmus Dietrich and Gonçalves from Baltic amber consistently groups with a lineage comprising treehoppers, Megophthalminae, Ulopinae, and Eurymelinae but its position is unstable. Overall, the morphology-based phylogenetic estimates agree with recent phylogenies based on molecular data alone suggesting that morphological traits recently used to diagnose subfamilies are generally informative of phylogenetic relationships within this group. 
    more » « less
  4. Portunoidea is a diverse lineage of ecologically and economically important marine crabs comprising 8 families and 14 subfamilies. Closely related portunid subfamilies Caphyrinae and Thalamitinae constitute some of this group’s greatest morphological and taxonomic diversity, and are the only known lineages to include symbiotic taxa. Emergence of symbiosis in decapods remains poorly studied and portunoid crabs provide an interesting, but often overlooked example. Yet the paucity of molecular phylogenetic data available for Portunoidea makes it challenging to investigate the evolution and systematics of the group. Phylogenetic analyses, though limited, suggest that many putative portunoid taxa are para- or polyphyletic. Here I augment existing molecular data—significantly increasing taxon sampling of Caphyrinae, Thalamitinae, and several disparate portunoid lineages—to investigate the phylogenetic origin of symbiosis within Portunoidea and reevaluate higher- and lower-level portunoid classifications. Phylogenetic analyses were carried out on sequences of H3, 28S rRNA, 16S rRNA, and CO1 for up to 168 portunoid taxa; this included, for the first time, molecular data from the genera Atoportunus , Brusinia , Caphyra , Coelocarcinus , Gonioinfradens , Raymanninus , and Thalamonyx . Results support the placement of all symbiotic taxa ( Caphyra , Lissocarcinus , and two Thalamita ) in a single clade derived within the thalamitine genus Thalamita . Caphyrina Paulson, 1875, nom. trans. is recognized here as a subtribe within the subfamily Thalamitinae. Results also support the following taxonomic actions: Cronius is reclassified as a thalamitine genus; Thalamonyx is reestablished as a valid genus; Goniosupradens is raised to the generic rank; and three new genera ( Zygita gen. nov., Thranita gen. nov., and Trierarchus gen. nov.) are described to accommodate some Thalamita s.l. taxa rendered paraphyletic by Caphyrina. A new diagnosis of Thalamitinae is provided. Results also support a more conservative classification of Portunoidea comprising three instead of eight extant families: Geryonidae (Geryonidae + Ovalipidae; new diagnosis provided), Carcinidae (Carcinidae + Pirimelidae + Polybiidae + Thiidae + Coelocarcinus ; new diagnosis provided) and Portunidae. Finally, 16s rRNA data suggests family Brusiniidae might not be a portunoid lineage. 
    more » « less
  5. Giribet, Gonzalo (Ed.)
    New Zealand is home to 30 recognised endemic mite harvestman species and subspecies, 26 of which were described by Ray Forster in 1948 and 1952. These species comprise three genera: Rakaia Hirst, 1926, Neopurcellia Forster, 1948, and Aoraki Boyer & Giribet, 2007. Here, we focus on the diversity and distribution of Aoraki: we describe A. grandis Boyer, Tuffield & Dohr, sp. nov. and A. meridialis Boyer, Hahn & Ward, sp. nov. and we synonymise A. granulosa (Forster, 1952) with A. tumidata (Forster, 1948), bringing the total of named species and subspecies to twelve, and extending the southern range of the genus by over 100 km. Our phylogenetic analysis revealed three major lineages within the genus characterised by differing levels of granulation of the male fourth tarsus. We report striking variation in the range size and level of genetic structuring present within currently recognised species and subspecies of Aoraki, and propose future studies to address evolutionary, biogeographic and taxonomic questions in the group. urn:lsid:zoobank.org:pub:BDD4D61C-B099–44D5–949C-34AD217A016F. 
    more » « less