Pore wetting is a major constraint to the performance of membrane distillation (MD) for hypersaline brine treatment. Despite the existence of surfactants with diverse properties, an explicit relationship between the properties of surfactants and their capabilities of inducing pore wetting has yet to be established. In this study, we perform a comparative analysis of the wetting behaviors of various surfactants with different charges and molecular weights in MD desalination. The induction time of surfactants to initiate pore wetting was correlated to the apparent contact angle and surface tension of the feedwater. Our results show that different surfactants resulting in similar feedwater surface tensions can lead to drastically different wetting potential, suggesting that both charge of the head group and molecular weight of surfactants have a significant influence on membrane pore wetting. Further, we demonstrate that parameters that have been commonly used to indicate wetting potential, including apparent contact angle and solution surface tension, are not reliable in predicting the wetting behavior of MD membranes, which is intricately linked with surfactant properties such as charge and molecular size. We envision that our results not only improve our fundamental understanding of surfactant-induced wetting but also provide valuable insights that necessitate thorough consideration of surfactant properties in evaluating wetting potential and membrane wetting resistance for MD desalination.
more »
« less
Hydrophobicity versus pore size: polymer coatings to improve membrane wetting resistance for membrane distillation
Initiated chemical vapor deposition (iCVD) was used to coat two porous substrates (i.e., hydrophilic cellulose acetate (CA) and hydrophobic polytetrafluoroethylene (PTFE)) with a crosslinked fluoropolymer to improve membrane wetting resistance. The coated CA membrane was superhydrophobic and symmetric. The coated PTFE membrane was hydrophobic and asymmetric, with smaller pore size and lower porosity on the top surface than on the bottom surface. Membrane performance was tested in membrane distillation experiments with (1) a high-salinity feed solution and (2) a surfactant-containing feed solution. In both cases, the coated membranes had higher wetting resistance than the uncoated membranes. Notably, wetting resistances were better predicted by LEP distributions than by minimum LEP values. When LEP distributions were skewed towards high LEP values (i.e., when small pores with high LEP were greater in number), significant (measurable) salt passage did not occur. For the high-salinity feed solution, the coated PTFE membrane had greater wetting resistance than the coated CA membrane; thus, reduced surface pore size/porosity (which may reduce intrapore scaling) was more effective than increased surface hydrophobicity (which may reduce surface nucleation) in preventing scaling-induced wetting. Reduced pore size/porosity was equally as effective as increased hydrophobicity in resisting surfactant-induced wetting. However, reduced porosity can negatively impact water flux; this represents a permeability/wetting resistance tradeoff in membrane distillation – especially for high-salinity applications. Membrane and/or membrane coating properties must be optimized to overcome this permeability/wetting resistance tradeoff and make MD viable for the treatment of challenging streams. Then, increasing hydrophobicity may not be necessary to impart high wetting resistance to porous membranes. These results are important for future membrane design, especially as manufacturers seek to replace perfluorinated materials with environmentally friendly alternatives.
more »
« less
- Award ID(s):
- 1820389
- PAR ID:
- 10250979
- Date Published:
- Journal Name:
- ACS applied polymer materials
- ISSN:
- 2637-6105
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection.more » « less
-
Abstract Omniphobic membranes are attractive for membrane distillation (MD) because of their superior wetting resistance. However, a design framework for MD membrane remains incomplete, due to the complexity of omniphobic membrane fabrication and the lack of fundamental relationship between wetting resistance and water vapor permeability. Here we present a particle-free approach that enables rapid fabrication of monolithic omniphobic membranes for MD desalination. Our monolithic omniphobic membranes display excellent wetting resistance and water purification performance in MD desalination of hypersaline feedwater containing surfactants. We identify that a trade-off exists between wetting resistance and water vapor permeability of our monolithic MD membranes. Utilizing membranes with tunable wetting resistance and permeability, we elucidate the underlying mechanism of such trade-off. We envision that our fabrication method as well as the mechanistic insight into the wetting resistance-vapor permeability trade-off will pave the way for smart design of MD membranes in diverse water purification applications.more » « less
-
Increasing water demand coupled with projected climate change puts the Southwestern United States at the highest risk of water sustainability by 2050. Membrane distillation offers a unique opportunity to utilize the substantial, but largely untapped geothermal brackish groundwater for desalination to lessen the stress. Two types of hydrophobic, microporous hollow fiber membranes (HFMs), including polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), were evaluated for their effectiveness in direct contact membrane distillation (DCMD). Water flux and salt rejection were measured as a function of module packing density and length in lab-scale systems. The PVDF HFMs generally exhibited higher water flux than the PTFE HFMs possibly due to thinner membrane wall and higher porosity. As the packing density or module length increased, water flux declined. The water production rate per module, however, increased due to the larger membrane surface area. A pilot-scale DCMD system was deployed to the 2nd largest geothermally-heated greenhouse in the United States for field testing over a duration of about 22 days. The results demonstrated the robustness of the DCMD system in the face of environmental fluctuation at the facility.more » « less
-
Membrane distillation (MD) can treat high-salinity brine. However, the system’s efficiency is hindered by obstacles, including salt scaling and temperature polarization. When properly implemented, surface patterns can improve the mass and heat transfer in the boundary layer, which leads to higher MD efficiency. In this work, the performance of direct contact membrane distillation (DCMD) using Sharklet-patterned poly (vinylidene fluoride) (PVDF) membranes is investigated. Both non-patterned and patterned PVDF membranes are prepared by lithographically templated thermally induced phase separation (lt-TIPS) process with optimized conditions. Sharklet patterns on the membranes improve the DCMD performance: up to 17 % higher water flux and 35 % increased brine-side heat transfer coefficient. The scaling resistance of the membranes during DCMD is tested by both saturated CaSO4 solution and hypersaline NaCl solutions. Patterned PVDF membranes show an average of 30 % higher water flux and up to 45 % lessened flux decline over time compared with non-patterned membranes when treating high-concentration brines. Post-mortem analysis reveals that Sharklet-patterned membranes display less salt-scaling on surfaces with smaller-sized CaSO4 and NaCl crystals, maintain a relatively cleaner surface, and exhibit better retention of hydrophobicity.more » « less
An official website of the United States government

