skip to main content


Title: ALMA observations of envelopes around first hydrostatic core candidates
ABSTRACT We present ALMA 3 mm molecular line and continuum observations with a resolution of ∼3.5 arcsec towards five first hydrostatic core (FHSC) candidates (L1451-mm, Per-bolo 58, Per-bolo 45, L1448-IRS2E, and Cha-MMS1). Our goal is to characterize their envelopes and identify the most promising sources that could be bona fide FHSCs. We identify two candidates that are consistent with an extremely young evolutionary state (L1451-mm and Cha-MMS1), with L1451-mm being the most promising FHSC candidate. Although our envelope observations cannot rule out Cha-MMS1 as an FHSC yet, the properties of its CO outflow and SED published in recent studies are in better agreement with the predictions for a young protostar. For the remaining three sources, our observations favour a pre-stellar nature for Per-bolo 45 and rule out the rest as FHSC candidates. Per-bolo 58 is fully consistent with being a Class 0, while L1448 IRS2E shows no emission of high-density tracers (NH2D and N2H+) at the location of the previously identified compact continuum source, which is also undetected in our observations. Thus, we argue that there is no embedded source at the presumptive location of the FHSC candidate L1448 IRS2E. We propose instead that what was thought to be emission from the presumed L1448 IRS2E outflow corresponds to outflow emission from a nearby Class 0 system, deflected by the dense ambient material. We compare the properties of the FHSC candidates studied in this work and the literature, which shows that L1451-mm appears as possibly the youngest source with a confirmed outflow.  more » « less
Award ID(s):
1714710
NSF-PAR ID:
10250991
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
499
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4394 to 4417
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We use 3 mm continuum NOrthern Extended Millimeter Array and NH 3 Very Large Array observations toward the First Hydrostatic Core (FHSC) candidate CB 17 MMS in order to reveal the dust structure and gas properties to 600–1100 au scales and to constrain its evolutionary stage. We do not detect any compact source at the previously identified 1.3 mm point source, despite expecting a minimum signal-to-noise ratio of 9. The gas traced by NH 3 exhibits subsonic motions, with an average temperature of 10.4 K. A fit of the radial column density profile derived from the ammonia emission finds a flat inner region of radius ∼1800 au and a central density of ∼6 × 10 5 cm −3 . Virial and density structure analysis reveals the core is marginally bound ( α vir = 0.73). The region is entirely consistent with that of a young starless core, hence ruling out CB 17 MMS as an FHSC candidate. Additionally, the core exhibits a velocity gradient aligned with the major axis, showing an arc-like structure in the position–velocity diagram and an off-center region with high velocity dispersion, caused by two distinct velocity peaks. These features could be due to interactions with the nearby outflow, which appears to deflect due to the dense gas near the NH 3 column density peak. We investigate the specific angular momentum profile of the starless core, finding that it aligns closely with previous studies of similar radial profiles in Class 0 sources. This similarity to more evolved objects suggests that motions at 1000 au scales are determined by large-scale dense cloud motions, and may be preserved throughout the early stages of star formation. 
    more » « less
  2. Abstract

    We report Very Large Array observations in theQband toward 10 ionized jet candidates to search for SiO emission, a well-known shocked gas tracer. We detected 7 mm continuum counterparts toward 90% of the jet candidates. In most cases, the jet candidate is located toward the center of the 7 mm core, and the high masses (≈100M) and densities (≈107cm−3) of the cores suggest that the central objects are very young high-mass protostars. We detected SiOJ= 1–0 emission associated with six target sources. In all cases, the morphology and spectrum of the emission is consistent with what is expected for molecular jets along an outflow axis, thus confirming the jet nature of 60% of our sample. Our data suggest a positive correlation between the SiO luminosityLSiO, and both the bolometric luminosityLBoland the radio luminositySνd2of the driving sources.

     
    more » « less
  3. Abstract Using the Karl G. Jansky Very Large Array (VLA), we have conducted a survey for 22 GHz, 6 1,6 –5 2,3 H 2 O masers toward the Serpens South region. The masers were also observed with the Very Long Baseline Array following the VLA detections. We detect for the first time H 2 O masers in the Serpens South region that are found to be associated to three Class 0–Class I objects, including the two brightest protostars in the Serpens South cluster, known as CARMA-6 and CARMA-7. We also detect H 2 O masers associated to a source with no outflow or jet features. We suggest that this source is most probably a background asymptotic giant branch star projected in the direction of Serpens South. The spatial distribution of the emission spots suggest that the masers in the three Class 0–Class I objects emerge very close to the protostars and are likely excited in shocks driven by the interaction between a protostellar jet and the circumstellar material. Based on the comparison of the distributions of bolometric luminosity of sources hosting 22 GHz H 2 O masers and 162 young stellar objects covered by our observations, we identify a limit of L Bol ≈ 10 L ⊙ for a source to host water masers. However, the maser emission shows strong variability in both intensity and velocity spread, and therefore masers associated to lower-luminosity sources may have been missed by our observations. We also report 11 new sources with radio continuum emission at 22 GHz. 
    more » « less
  4. null (Ed.)
    ABSTRACT G0.253+0.016, aka ‘the Brick’, is one of the most massive (>105 M⊙) and dense (>104 cm−3) molecular clouds in the Milky Way’s Central Molecular Zone. Previous observations have detected tentative signs of active star formation, most notably a water maser that is associated with a dust continuum source. We present ALMA Band 6 observations with an angular resolution of 0.13 arcsec (1000 AU) towards this ‘maser core’ and report unambiguous evidence of active star formation within G0.253+0.016. We detect a population of eighteen continuum sources (median mass ∼2 M⊙), nine of which are driving bi-polar molecular outflows as seen via SiO (5–4) emission. At the location of the water maser, we find evidence for a protostellar binary/multiple with multidirectional outflow emission. Despite the high density of G0.253+0.016, we find no evidence for high-mass protostars in our ALMA field. The observed sources are instead consistent with a cluster of low-to-intermediate-mass protostars. However, the measured outflow properties are consistent with those expected for intermediate-to-high-mass star formation. We conclude that the sources are young and rapidly accreting, and may potentially form intermediate- and high-mass stars in the future. The masses and projected spatial distribution of the cores are generally consistent with thermal fragmentation, suggesting that the large-scale turbulence and strong magnetic field in the cloud do not dominate on these scales, and that star formation on the scale of individual protostars is similar to that in Galactic disc environments. 
    more » « less
  5. Abstract Accreting protoplanets are windows into planet formation processes, and high-contrast differential imaging is an effective way to identify them. We report results from the Giant Accreting Protoplanet Survey (GAPlanetS), which collected H α differential imagery of 14 transitional disk host stars with the Magellan Adaptive Optics System. To address the twin challenges of morphological complexity and point-spread function instability, GAPlanetS required novel approaches for frame selection and optimization of the Karhounen–Loéve Image Processing algorithm pyKLIP . We detect one new candidate, CS Cha “c,” at a separation of 68 mas and a modest Δmag of 2.3. We recover the HD 142527 B and HD 100453 B accreting stellar companions in several epochs, and the protoplanet PDS 70 c in 2017 imagery, extending its astrometric record by nine months. Though we cannot rule out scattered light structure, we also recover LkCa 15 “b,” at H α ; its presence inside the disk cavity, absence in Continuum imagery, and consistency with a forward-modeled point source suggest that it remains a viable protoplanet candidate. Through targeted optimization, we tentatively recover PDS 70 c at two additional epochs and PDS 70 b in one epoch. Despite numerous previously reported companion candidates around GAplanetS targets, we recover no additional point sources. Our moderate H α contrasts do not preclude most protoplanets, and we report limiting H α contrasts at unrecovered candidate locations. We find an overall detection rate of ∼36 − 22 + 26 % , considerably higher than most direct imaging surveys, speaking to both GAPlanetS’s highly targeted nature and the promise of H α differential imaging for protoplanet identification. 
    more » « less