We report Very Large Array observations in the
ALMA observations of envelopes around first hydrostatic core candidates
ABSTRACT We present ALMA 3 mm molecular line and continuum observations with a resolution of ∼3.5 arcsec towards five first hydrostatic core (FHSC) candidates (L1451-mm, Per-bolo 58, Per-bolo 45, L1448-IRS2E, and Cha-MMS1). Our goal is to characterize their envelopes and identify the most promising sources that could be bona fide FHSCs. We identify two candidates that are consistent with an extremely young evolutionary state (L1451-mm and Cha-MMS1), with L1451-mm being the most promising FHSC candidate. Although our envelope observations cannot rule out Cha-MMS1 as an FHSC yet, the properties of its CO outflow and SED published in recent studies are in better agreement with the predictions for a young protostar. For the remaining three sources, our observations favour a pre-stellar nature for Per-bolo 45 and rule out the rest as FHSC candidates. Per-bolo 58 is fully consistent with being a Class 0, while L1448 IRS2E shows no emission of high-density tracers (NH2D and N2H+) at the location of the previously identified compact continuum source, which is also undetected in our observations. Thus, we argue that there is no embedded source at the presumptive location of the FHSC candidate L1448 IRS2E. We propose instead that what was thought to be emission from the presumed L1448 IRS2E outflow corresponds to outflow emission from a nearby Class 0 system, deflected by the dense ambient material. We compare the properties of the FHSC candidates studied in this work and the literature, which shows that L1451-mm appears as possibly the youngest source with a confirmed outflow.
more »
« less
- Award ID(s):
- 1714710
- PAR ID:
- 10250991
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 499
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 4394 to 4417
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Q band toward 10 ionized jet candidates to search for SiO emission, a well-known shocked gas tracer. We detected 7 mm continuum counterparts toward 90% of the jet candidates. In most cases, the jet candidate is located toward the center of the 7 mm core, and the high masses (≈100M ⊙) and densities (≈107cm−3) of the cores suggest that the central objects are very young high-mass protostars. We detected SiOJ = 1–0 emission associated with six target sources. In all cases, the morphology and spectrum of the emission is consistent with what is expected for molecular jets along an outflow axis, thus confirming the jet nature of 60% of our sample. Our data suggest a positive correlation between the SiO luminosityL SiO, and both the bolometric luminosityL Boland the radio luminosityS ν d 2of the driving sources. -
Abstract Using the Karl G. Jansky Very Large Array (VLA), we have conducted a survey for 22 GHz, 6 1,6 –5 2,3 H 2 O masers toward the Serpens South region. The masers were also observed with the Very Long Baseline Array following the VLA detections. We detect for the first time H 2 O masers in the Serpens South region that are found to be associated to three Class 0–Class I objects, including the two brightest protostars in the Serpens South cluster, known as CARMA-6 and CARMA-7. We also detect H 2 O masers associated to a source with no outflow or jet features. We suggest that this source is most probably a background asymptotic giant branch star projected in the direction of Serpens South. The spatial distribution of the emission spots suggest that the masers in the three Class 0–Class I objects emerge very close to the protostars and are likely excited in shocks driven by the interaction between a protostellar jet and the circumstellar material. Based on the comparison of the distributions of bolometric luminosity of sources hosting 22 GHz H 2 O masers and 162 young stellar objects covered by our observations, we identify a limit of L Bol ≈ 10 L ⊙ for a source to host water masers. However, the maser emission shows strong variability in both intensity and velocity spread, and therefore masers associated to lower-luminosity sources may have been missed by our observations. We also report 11 new sources with radio continuum emission at 22 GHz.more » « less
-
Abstract One of the most poorly understood aspects of low-mass star formation is how multiple-star systems are formed. Here we present the results of Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations toward a forming quadruple protostellar system, G206.93-16.61E2, in the Orion B molecular cloud. ALMA 1.3 mm continuum emission reveals four compact objects, of which two are Class I young stellar objects and the other two are likely in prestellar phase. The 1.3 mm continuum emission also shows three asymmetric ribbon-like structures that are connected to the four objects, with lengths ranging from ∼500 to ∼2200 au. By comparing our data with magnetohydrodynamic simulations, we suggest that these ribbons trace accretion flows and also function as gas bridges connecting the member protostars. Additionally, ALMA CO J = 2−1 line emission reveals a complicated molecular outflow associated with G206.93-16.61E2, with arc-like structures suggestive of an outflow cavity viewed pole-on.more » « less
-
Abstract Observed changes in protostellar brightness can be complicated to interpret. In our James Clerk Maxwell Telescope (JCMT) Transient Monitoring Survey, we discovered that a young binary protostar, HOPS 373, is undergoing a modest 30% brightness increase at 850 μ m, caused by a factor of 1.8–3.3 enhancement in the accretion rate. The initial burst occurred over a few months, with a sharp rise and then a shallower decay. A second rise occurred soon after the decay, and the source is still bright one year later. The mid-IR emission, the small-scale CO outflow mapped with ALMA, and the location of variable maser emission indicate that the variability is associated with the SW component. The near-IR and NEOWISE W1 and W2 emission is located along the blueshifted CO outflow, spatially offset by ∼3 to 4″ from the SW component. The K -band emission imaged by UKIRT shows a compact H 2 emission source at the edge of the outflow, with a tail tracing the outflow back to the source. The W1 emission, likely dominated by scattered light, brightens by 0.7 mag, consistent with expectations based on the submillimeter light curve. The signal of continuum variability in K band and W2 is masked by stable H 2 emission, as seen in our Gemini/GNIRS spectrum, and perhaps by CO emission. These differences in emission sources complicate IR searches for variability of the youngest protostars.more » « less
-
Abstract We use 3 mm continuum NOrthern Extended Millimeter Array and NH 3 Very Large Array observations toward the First Hydrostatic Core (FHSC) candidate CB 17 MMS in order to reveal the dust structure and gas properties to 600–1100 au scales and to constrain its evolutionary stage. We do not detect any compact source at the previously identified 1.3 mm point source, despite expecting a minimum signal-to-noise ratio of 9. The gas traced by NH 3 exhibits subsonic motions, with an average temperature of 10.4 K. A fit of the radial column density profile derived from the ammonia emission finds a flat inner region of radius ∼1800 au and a central density of ∼6 × 10 5 cm −3 . Virial and density structure analysis reveals the core is marginally bound ( α vir = 0.73). The region is entirely consistent with that of a young starless core, hence ruling out CB 17 MMS as an FHSC candidate. Additionally, the core exhibits a velocity gradient aligned with the major axis, showing an arc-like structure in the position–velocity diagram and an off-center region with high velocity dispersion, caused by two distinct velocity peaks. These features could be due to interactions with the nearby outflow, which appears to deflect due to the dense gas near the NH 3 column density peak. We investigate the specific angular momentum profile of the starless core, finding that it aligns closely with previous studies of similar radial profiles in Class 0 sources. This similarity to more evolved objects suggests that motions at 1000 au scales are determined by large-scale dense cloud motions, and may be preserved throughout the early stages of star formation.more » « less