skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Human-Aware Robot Task Planning Based on a Hierarchical Task Model
Award ID(s):
1734109
PAR ID:
10250998
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
6
Issue:
2
ISSN:
2377-3774
Page Range / eLocation ID:
1136 to 1143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Data collected from real-world environments often contain multiple objects, scenes, and activities. In comparison to single-label problems, where each data sample only defines one concept, multi-label problems allow the co-existence of multiple concepts. To exploit the rich semantic information in real-world data, multi-label classification has seen many applications in a variety of domains. The traditional approaches to multi-label problems tend to have the side effects of increased memory usage, slow model inference speed, and most importantly the under-utilization of the dependency across concepts. In this paper, we adopt multi-task learning to address these challenges. Multi-task learning treats the learning of each concept as a separate job, while at the same time leverages the shared representations among all tasks. We also propose a dynamic task balancing method to automatically adjust the task weight distribution by taking both sample-level and task-level learning complexities into consideration. Our framework is evaluated on a disaster video dataset and the performance is compared with several state-of-the-art multi-label and multi-task learning techniques. The results demonstrate the effectiveness and supremacy of our approach. 
    more » « less