Numerical Relativity Simulations of the Neutron Star Merger GW170817: Long-term Remnant Evolutions, Winds, Remnant Disks, and Nucleosynthesis
                        
                    - Award ID(s):
- 2020275
- PAR ID:
- 10251052
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 906
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 98
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            Abstract In the absence of a parallax distance to a pulsar or a surviving binary in a supernova remnant (SNR), distances to Galactic SNRs are generally very uncertain. However, by combining Gaia data with wide-field, multifiber echelle spectroscopy, it is now possible to obtain accurate distances to many SNRs with limited extinction by searching for the appearance of high-velocity Caiior Naiabsorption lines in hot stars as a function of distance. We demonstrate this for the SNR S147 using the spectra of 259 luminous blue stars. We obtain a median distance of 1.37 kpc (1.30–1.47 kpc at 90% confidence), which is consistent with the median parallax distance to the pulsar of 1.46 kpc (1.12–2.10 kpc at 90% confidence) but with significantly smaller uncertainties. Our distance is also consistent with the distance to the candidate unbound binary companion in this SNR, HD 37424 at a photogeometric distance of 1.45 kpc (1.40–1.50 kpc at 1σ). The presence of high-velocity absorption lines is correlated with the Hα/O [iii] emission-line flux of the SNR but not with the radio flux.more » « less
- 
            Abstract Using resolved optical stellar photometry from the Panchromatic Hubble Andromeda Treasury Triangulum Extended Region survey, we measured the star formation history near the position of 85 supernova remnants (SNRs) in M33. We constrained the progenitor masses for 60 of these SNRs, finding that the remaining 25 remnants had no local star formation in the last 56 Myr, consistent with core-collapse supernovae, making them potential Type Ia candidates. We then infer a progenitor mass distribution from the age distribution, assuming single star evolution. We find that the progenitor mass distribution is consistent with being drawn from a power law with an index of − 2.9 − 1.0 + 1.2 . Additionally, we infer a minimum progenitor mass of 7.1 − 0.2 + 0.1 M ⊙ from this sample, consistent with several previous studies, providing further evidence that stars with ages older than the lifetimes of single 8 M ⊙ stars are producing supernovae.more » « less
- 
            Abstract Molecular emission was imaged with ALMA from numerous components near and within bright H2-emitting knots and absorbing dust globules in the Crab Nebula. These observations provide a critical test of how energetic photons and particles produced in a young supernova remnant interact with gas, cleanly differentiating between competing models. The four fields targeted show contrasting properties but within them, seventeen distinct molecular clouds are identified with CO emission; a few also show emission from HCO+, SiO, and/or SO. These observations are compared with Cloudy models of these knots. It has been suggested that the Crab filaments present an exotic environment in which H2emission comes from a mostly neutral zone probably heated by cosmic rays produced in the supernova surrounding a cool core of molecular gas. Our model is consistent with the observed COJ= 3 − 2 line strength. These molecular line emitting knots in the Crab Nebula present a novel phase of the ISM representative of many important astrophysical environments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    