Breast cancer treatment can be improved with biomarkers for early detection and individualized therapy. A set of 86 microRNAs (miRNAs) were identified to separate breast cancer tumors from normal breast tissues (n = 52) with an overall accuracy of 90.4%. Six miRNAs had concordant expression in both tumors and breast cancer patient blood samples compared with the normal control samples. Twelve miRNAs showed concordant expression in tumors vs. normal breast tissues and patient survival (n = 1093), with seven as potential tumor suppressors and five as potential oncomiRs. From experimentally validated target genes of these 86 miRNAs, pan-sensitive and pan-resistant genes with concordant mRNA and protein expression associated with in-vitro drug response to 19 NCCN-recommended breast cancer drugs were selected. Combined with in-vitro proliferation assays using CRISPR-Cas9/RNAi and patient survival analysis, MEK inhibitors PD19830 and BRD-K12244279, pilocarpine, and tremorine were discovered as potential new drug options for treating breast cancer. Multi-omics biomarkers of response to the discovered drugs were identified using human breast cancer cell lines. This study presented an artificial intelligence pipeline of miRNA-based discovery of biomarkers, therapeutic targets, and repositioning drugs that can be applied to many cancer types.
more »
« less
Tracking the Progression of Triple Negative Mammary Tumors over Time by Chemometric Analysis of Urinary Volatile Organic Compounds
Previous studies have shown that volatile organic compounds (VOCs) are potential biomarkers of breast cancer. An unanswered question is how urinary VOCs change over time as tumors progress. To explore this, BALB/c mice were injected with 4T1.2 triple negative murine tumor cells in the tibia. This typically causes tumor progression and osteolysis in 1–2 weeks. Samples were collected prior to tumor injection and from days 2–19. Samples were analyzed by headspace solid phase microextraction coupled to gas chromatography–mass spectrometry. Univariate analysis identified VOCs that were biomarkers for breast cancer; some of these varied significantly over time and others did not. Principal component analysis was used to distinguish Cancer (all Weeks) from Control and Cancer Week 1 from Cancer Week 3 with over 90% accuracy. Forward feature selection and linear discriminant analysis identified a unique panel that could identify tumor presence with 94% accuracy and distinguish progression (Cancer Week 1 from Cancer Week 3) with 97% accuracy. Principal component regression analysis also demonstrated that a VOC panel could predict number of days since tumor injection (R2 = 0.71 and adjusted R2 = 0.63). VOC biomarkers identified by these analyses were associated with metabolic pathways relevant to breast cancer.
more »
« less
- Award ID(s):
- 1659688
- PAR ID:
- 10251276
- Date Published:
- Journal Name:
- Cancers
- Volume:
- 13
- Issue:
- 6
- ISSN:
- 2072-6694
- Page Range / eLocation ID:
- 1462
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Breast cancer is the most common cancer detected in women and current screening methods for the disease are not sensitive. Volatile organic compounds (VOCs) include endogenous metabolites that provide information about health and disease which might be useful to develop a better screening method for breast cancer. The goal of this study was to classify mice with and without tumors and compare tumors localized to the mammary pad and tumor cells injected into the iliac artery by differences in VOCs in urine. After 4T1.2 tumor cells were injected into BALB/c mice either in the mammary pad or into the iliac artery, urine was collected, VOCs from urine headspace were concentrated by solid phase microextraction and results were analyzed by gas chromatography-mass spectrometry quadrupole time-of-flight. Multivariate and univariate statistical analyses were employed to find potential biomarkers for breast cancer and metastatic breast cancer in mice models. A set of six VOCs classified mice with and without tumors with an area under the receiver operator characteristic (ROC AUC) of 0.98 (95% confidence interval [0.85, 1.00]) via five-fold cross validation. Classification of mice with tumors in the mammary pad and iliac artery was executed utilizing a different set of six VOCs, with a ROC AUC of 0.96 (95% confidence interval [0.75, 1.00]).more » « less
-
null (Ed.)ABSTRACT Current methods for non-invasive prostate cancer (PrCa) detection have a high false-positive rate and often result in unnecessary biopsies. Previous work has suggested that urinary volatile organic compound (VOC) biomarkers may be able to distinguish PrCa cases from benign disease. The behavior of the nematode Caenorhabditis elegans has been proposed as a tool to take advantage of these potential VOC profiles. To test the ability of C. elegans Bristol N2 to distinguish PrCa cases from controls, we performed chemotaxis assays using human urine samples collected from men screened for PrCa. Behavioral response of nematodes towards diluted urine from PrCa cases was compared to response to samples from cancer-free controls. Overall, we observed a significant attraction of young adult-stage C. elegans nematodes to 1:100 diluted urine from confirmed PrCa cases and repulsion of C. elegans to urine from controls. When C. elegans chemotaxis index was considered alongside prostate-specific antigen levels for distinguishing cancer from cancer-free controls, the accuracy of patient classification was 81%. We also observed behavioral attraction of C. elegans to two previously reported VOCs to be increased in PrCa patient urine. We conclude nematode behavior distinguishes PrCa case urine from controls in a dilution-dependent manner.more » « less
-
Tumor subtype and menopausal status are strong predictors of breast cancer (BC) prognosis. We aimed to find and validate subtype- or menopausal-status-specific changes in tumor DNA methylation (DNAm) associated with all-cause mortality or BC progression. Associations between site-specific tumor DNAm and BC prognosis were estimated among The Cancer Genome Atlas participants ( n = 692) with Illumina Infinium HumanMethylation450 BeadChip array data. All-cause mortality and BC progression were modeled using Cox proportional hazards models stratified by tumor subtypes, adjusting for age, race, stage, menopausal status, tumor purity, and cell type proportion. Effect measure modification by subtype and menopausal status were evaluated by incorporating a product term with DNAm. Site-specific inference was used to identify subtype- or menopausal-status-specific differentially methylated regions (DMRs) and functional pathways. The validation of the results was carried out on an independent dataset (GSE72308; n = 180). We identified a total of fifteen unique CpG probes that were significantly associated ( P ≤ 1 × 10 − 7 with survival outcomes in subtype- or menopausal-status-specific manner. Seven probes were associated with overall survival (OS) or progression-free interval (PFI) for women with luminal A subtype, and four probes were associated with PFI for women with luminal B subtype. Five probes were associated with PFI for post-menopausal women. A majority of significant probes showed a lower risk of OS or BC progression with higher DNAm. We identified subtype- or menopausal-status-specific DMRs and functional pathways of which top associated pathways differed across subtypes or menopausal status. None of significant probes from site-specific analyses met genome-wide significant level in validation analyses while directions and magnitudes of coefficients showed consistent pattern. We have identified subtype- or menopausal-status-specific DNAm biomarkers, DMRs and functional pathways associated with all-cause mortality or BC progression, albeit with limited validation. Future studies with larger independent cohort of non-post-menopausal women with non-luminal A subtypes are warranted for identifying subtype- and menopausal-status-specific DNAm biomarkers for BC prognosis.more » « less
-
Finding the network biomarkers of cancers and the analysis of cancer driving genes that are involved in these biomarkers are essential for understanding the dynamics of cancer. Clusters of genes in co-expression networks are commonly known as functional units. This work is based on the hypothesis that the dense clusters or communities in the gene co-expression networks of cancer patients may represent functional units regarding cancer initiation and progression. In this study, RNA-seq gene expression data of three cancers - Breast Invasive Carcinoma (BRCA), Colorectal Adenocarcinoma (COAD) and Glioblastoma Multiforme (GBM) - from The Cancer Genome Atlas (TCGA) are used to construct gene co-expression networks using Pearson Correlation. Six well-known community detection algorithms are applied on these networks to identify communities with five or more genes. A permutation test is performed to further mine the communities that are conserved in other cancers, thus calling them conserved communities. Then survival analysis is performed on clinical data of three cancers using the conserved community genes as prognostic co-variates. The communities that could distinguish the cancer patients between high- and low-risk groups are considered as cancer biomarkers. In the present study, 16 such network biomarkers are discovered.more » « less