ABSTRACT We present WIYN1/Hydra spectra of 34 red giant candidate members of NGC 188, which, together with WOCS2 and Gaia data yield 23 single members, 6 binary members, 4 single non-members, and 1 binary non-member. We report [Fe/H] for 29 members and derive [Fe/H]NGC188 = +0.064 ± 0.018 dex (σμ) (sky spectra yield A(Fe)⊙ = 7.520 ± 0.015 dex (σμ)). We discuss effects on the derived parameters of varying Yale-Yonsei isochrones to fit the turnoff. We take advantage of the coolest, lowest gravity giants to refine the line list near Li 6707.8 Å. Using synthesis we derive detections of A(Li)3 = 1.17, 1.65, 2.04, and 0.60 dex for stars 4346, 4705, 5027, and 6353, respectively, and 3σ upper limits for the other members. Whereas only two of the detections meet the traditional criterion for ‘Li-richness’ of A(Li) > 1.5 dex, we argue that since the cluster A(Li) vanish as subgiants evolve to the base of the RGB, all four stars are Li-rich in this cluster’s context. An incidence of even a few Li-rich stars in a sample of 29 stars is far higher than what recent large surveys have found in the field. All four stars lie either slightly or substantially away from the cluster fiducial sequence, possibly providing clues about their Li-richness. We discuss a number of possibilities for the origin for the Li in each star, and suggest potentially discriminating future observations.
more »
« less
WIYN Open Cluster Study. LXXXII. Radial-velocity Measurements and Spectroscopic Binary Orbits in the Open Cluster NGC 7789
- Award ID(s):
- 1714506
- PAR ID:
- 10251289
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 160
- Issue:
- 4
- ISSN:
- 1538-3881
- Page Range / eLocation ID:
- 169
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The study of white dwarfs, the end stage of stellar evolution for more than 95% of stars, is critical to bettering our understanding of the late stages of the lives of low mass stars. In particular, the post main sequence evolution of binary star systems is complex, and the identification and analysis of double degenerate systems is a crucial step in constraining models of binary star systems. Binary white dwarfs in open star clusters are particularly useful because cluster parameters such as distance, metal content, and total system age are more tightly constrained than for field double degenerates. Here we use the precision astrometry from the Gaia Data Release 2 catalog to study two other white dwarfs which were identified as candidate double degenerates in the field of the open star cluster NGC 6633. One of the two objects, LAWDS 4, is found to have astrometric properties fully consistent with that of the cluster. In such a case, the object is significantly overluminous for a single white dwarf, strongly indicating binarity. The second candidate binary, LAWDS 7, appears to be inconsistent with cluster membership, though a more thorough analysis is necessary to properly quantify the probability. At present we are proceeding to model the photometric and spectroscopic data for both objects as if they were cluster member double degenerates. Results of this latter analysis are forthcoming. Our results will add crucial data to the study of binary star evolution in open star clusters.more » « less
-
Abstract We consider WIYN/Hydra spectra of 329 photometric candidate members of the 420 Myr old open cluster M48 and report lithium detections or upper limits for 234 members and likely members. The 171 single members define a number of notable Li-mass trends, some delineated even more clearly than in Hyades/Praesepe: the giants are consistent with subgiant Li dilution and prior MS Li depletion due to rotational mixing. A dwarfs (8600–7700 K) have upper limits higher than the presumed initial cluster Li abundance. Two of five late A dwarfs (7700–7200 K) are Li-rich, possibly due to diffusion, planetesimal accretion, and/or engulfment of hydrogen-poor planets. Early F dwarfs already show evidence of Li depletion seen in older clusters. The Li–Tefftrends of the Li Dip (6675–6200 K), Li Plateau (6200–6000 K), and G and K dwarfs (6000–4000 K) are very clearly delineated and are intermediate to those of the 120 Myr old Pleiades and 650 Myr old Hyades/Praesepe, which suggests a sequence of Li depletion with age. The cool side of the Li Dip is especially well defined with little scatter. The Li–Tefftrend is very tight in the Li Plateau and early G dwarfs, but scatter increases gradually for cooler dwarfs. These patterns support and constrain models of the universally dominant Li depletion mechanism for FGK dwarfs, namely rotational mixing due to angular momentum loss; we discuss how diffusion and gravity-wave-driven mixing may also play roles. For late G/K dwarfs, faster rotators show higher Li than slower rotators, and we discuss possible connections between angular momentum loss and Li depletion.more » « less
An official website of the United States government

