skip to main content

Title: Double degenerate candidates in the open cluster NGC 6633
Abstract The study of white dwarfs, the end stage of stellar evolution for more than 95% of stars, is critical to bettering our understanding of the late stages of the lives of low mass stars. In particular, the post main sequence evolution of binary star systems is complex, and the identification and analysis of double degenerate systems is a crucial step in constraining models of binary star systems. Binary white dwarfs in open star clusters are particularly useful because cluster parameters such as distance, metal content, and total system age are more tightly constrained than for field double degenerates. Here we use the precision astrometry from the Gaia Data Release 2 catalog to study two other white dwarfs which were identified as candidate double degenerates in the field of the open star cluster NGC 6633. One of the two objects, LAWDS 4, is found to have astrometric properties fully consistent with that of the cluster. In such a case, the object is significantly overluminous for a single white dwarf, strongly indicating binarity. The second candidate binary, LAWDS 7, appears to be inconsistent with cluster membership, though a more thorough analysis is necessary to properly quantify the probability. At present we more » are proceeding to model the photometric and spectroscopic data for both objects as if they were cluster member double degenerates. Results of this latter analysis are forthcoming. Our results will add crucial data to the study of binary star evolution in open star clusters. « less
Authors:
;
Award ID(s):
1910551
Publication Date:
NSF-PAR ID:
10253504
Journal Name:
Proceedings of the International Astronomical Union
Volume:
15
Issue:
S357
Page Range or eLocation-ID:
20 to 23
ISSN:
1743-9213
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract White dwarfs (WDs) in open star clusters are a highly useful ensemble of stars. While numerous researchers use open cluster WDs to study the initial-final mass relation, numerous other evolutionary studies are also enabled by this sample of stars, including searches for stochastic mass loss, studies of binary star evolution, and measurements of metallicity impacts on WD formation and evolution. However, it is crucial to use astrometric data such as proper motions to remove contaminating field WDs from open cluster samples; multi-epoch ground based imaging is needed for most open cluster WDs. Also, the strongly correlated errors in the initial mass - final mass plane must be considered; we illustrate the importance of this consideration using a large open cluster WD sample and Monte Carlo techniques.
  2. ABSTRACT We present a detailed model atmosphere analysis of 14001 DA white dwarfs from the Montreal White Dwarf Database with ultraviolet photometry from the GALEX mission. We use the 100 pc sample, where the extinction is negligible, to demonstrate that there are no major systematic differences between the best-fitting parameters derived from optical only data and the optical + UV photometry. GALEX FUV and NUV data improve the statistical errors in the model fits, especially for the hotter white dwarfs with spectral energy distributions that peak in the UV. Fitting the UV to optical spectral energy distributions also reveals UV-excess or UV-deficit objects. We use two different methods to identify outliers in our model fits. Known outliers include objects with unusual atmospheric compositions, strongly magnetic white dwarfs, and binary white dwarfs, including double degenerates and white dwarf + main-sequence systems. We present a list of 89 newly identified outliers based on GALEX UV data; follow-up observations of these objects will be required to constrain their nature. Several current and upcoming large-scale spectroscopic surveys are targeting >105 white dwarfs. In addition, the ULTRASAT mission is planning an all-sky survey in the NUV band. A combination of the UV data from GALEX and ULTRASATmore »and optical data on these large samples of spectroscopically confirmed DA white dwarfs will provide an excellent opportunity to identify unusual white dwarfs in the solar neighbourhood.« less
  3. ABSTRACT

    We present our findings on the spectral analysis of seven magnetic white dwarfs that were presumed to be double degenerates. We obtained time-resolved spectroscopy at the Gemini Observatory to look for evidence of binarity or fast rotation. We find three of our targets have rotation periods of less than an hour based on the shifting positions of the Zeeman-split H α components: 13, 35, and 39 min, and we find one more target with a approximately an hour long period that is currently unconstrained. We use offset dipole models to determine the inclination, magnetic field strength, and dipole offset of each target. The average surface field strengths of our fast rotators vary by 1–2 MG between different spectra. In all cases, the observed absorption features are too shallow compared to our models. This could be due to extra flux from a companion for our three low-mass targets, but the majority of our sample likely requires an inhomogeneous surface composition. Including an additional magnetic white dwarf with similar properties presented in the literature, we find that five of the eight targets in this sample show field variations on minute/hour time-scales. A crystallization driven dynamo can potentially explain the magnetic fields in three ofmore »our targets with masses above 0.7 M⊙, but another mechanism is still needed to explain their rapid rotation. We suggest that rapid rotation or low-masses point to binary evolution as the likely source of magnetism in seven of these eight targets.

    « less
  4. We present the goals, strategy and first results of the high-cadence Galactic plane survey using the Zwicky Transient Facility (ZTF). The goal of the survey is to unveil the Galactic population of short-period variable stars, including short period binaries and stellar pulsators with periods less than a few hours. Between June 2018 and January 2019, we observed 64 ZTF fields resulting in 2990 deg2 of high stellar density in ZTF-r band along the Galactic Plane. Each field was observed continuously for 1.5 to 6 hrs with a cadence of 40 sec. Most fields have between 200 and 400 observations obtained over 2-3 continuous nights. As part of this survey we extract a total of ≈230 million individual objects with at least 80 epochs obtained during the high-cadence Galactic Plane survey reaching an average depth of ZTF-r ≈20.5 mag. For four selected fields with 2 million to 10 million individual objects per field we calculate different variability statistics and find that ≈1-2% of the objects are astrophysically variable over the observed period. We present a progress report on recent discoveries, including a new class of compact pulsators, the first members of a new class of Roche Lobe filling hot subdwarf binariesmore »as well as new ultracompact double white dwarfs and flaring stars. Finally we present a sample of 12 new single-mode hot subdwarf B-star pulsators with pulsation amplitudes between ZTF-r = 20-76 mmag and pulsation periods between P = 5.8-16 min with a strong cluster of systems with periods ≈ 6 min. All of the data have now been released in either ZTF Data Release 3 or data release 4.« less
  5. Context. The TESS satellite was launched in 2018 to perform high-precision photometry from space over almost the whole sky in a search for exoplanets orbiting bright stars. This instrument has opened new opportunities to study variable hot subdwarfs, white dwarfs, and related compact objects. Targets of interest include white dwarf and hot subdwarf pulsators, both carrying high potential for asteroseismology. Aims. We present the discovery and detailed asteroseismic analysis of a new g -mode hot B subdwarf (sdB) pulsator, EC 21494−7018 (TIC 278659026), monitored in TESS first sector using 120-s cadence. Methods. The TESS light curve was analyzed with standard prewhitening techniques, followed by forward modeling using our latest generation of sdB models developed for asteroseismic investigations. By simultaneously best-matching all the observed frequencies with those computed from models, we identified the pulsation modes detected and, more importantly, we determined the global parameters and structural configuration of the star. Results. The light curve analysis reveals that EC 21494−7018 is a sdB pulsator counting up to 20 frequencies associated with independent g -modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluatedmore »from Gaia DR2 trigonometric parallax). Several key parameters of the star are derived. Its mass (0.391 ± 0.009  M ⊙ ) is significantly lower than the typical mass of sdB stars and suggests that its progenitor has not undergone the He-core flash; therefore this progenitor could originate from a massive (≳2  M ⊙ ) red giant, which is an alternative channel for the formation of sdBs. Other derived parameters include the H-rich envelope mass (0.0037 ± 0.0010  M ⊙ ), radius (0.1694 ± 0.0081  R ⊙ ), and luminosity (8.2 ± 1.1  L ⊙ ). The optimal model fit has a double-layered He+H composition profile, which we interpret as an incomplete but ongoing process of gravitational settling of helium at the bottom of a thick H-rich envelope. Moreover, the derived properties of the core indicate that EC 21494−7018 has burnt ∼43% (in mass) of its central helium and possesses a relatively large mixed core ( M core  = 0.198 ± 0.010  M ⊙ ), in line with trends already uncovered from other g-mode sdB pulsators analyzed with asteroseismology. Finally, we obtain for the first time an estimate of the amount of oxygen (in mass; X (O) core = 0.16 +0.13 −0.05 ) produced at this stage of evolution by an helium-burning core. This result, along with the core-size estimate, is an interesting constraint that may help to narrow down the still uncertain 12 C( α ,  γ ) 16 O nuclear reaction rate.« less