skip to main content


Title: Mirrorless Mirror Descent: A Natural Derivation of Mirror Descent
Award ID(s):
2019844
NSF-PAR ID:
10251350
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 24th International Conference on Artificial Intelligence and Statistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present a direct (primal only) derivation of Mirror Descent as a “partial” discretization of gradient flow on a Riemannian manifold where the metric tensor is the Hessian of the Mirror Descent potential function. We contrast this discretization to Natural Gradient Descent, which is obtained by a “full” forward Euler discretization. This view helps shed light on the relationship between the methods and allows generalizing Mirror Descent to any Riemannian geometry in Rd, even when the metric tensor is not a Hessian, and thus there is no “dual.” 
    more » « less
  2. Abstract Practical engineering designs typically involve many load cases. For topology optimization with many deterministic load cases, a large number of linear systems of equations must be solved at each optimization step, leading to an enormous computational cost. To address this challenge, we propose a mirror descent stochastic approximation (MD-SA) framework with various step size strategies to solve topology optimization problems with many load cases. We reformulate the deterministic objective function and gradient into stochastic ones through randomization, derive the MD-SA update, and develop algorithmic strategies. The proposed MD-SA algorithm requires only low accuracy in the stochastic gradient and thus uses only a single sample per optimization step (i.e., the sample size is always one). As a result, we reduce the number of linear systems to solve per step from hundreds to one, which drastically reduces the total computational cost, while maintaining a similar design quality. For example, for one of the design problems, the total number of linear systems to solve and wall clock time are reduced by factors of 223 and 22, respectively. 
    more » « less
  3. null (Ed.)
    Canonical polyadic decomposition (CPD) has been a workhorse for multimodal data analytics. This work puts forth a stochastic algorithmic framework for CPD under β-divergence, which is well-motivated in statistical learning—where the Euclidean distance is typically not preferred. Despite the existence of a series of prior works addressing this topic, pressing computational and theoretical challenges, e.g., scalability and convergence issues, still remain. In this paper, a unified stochastic mirror descent framework is developed for large-scale β-divergence CPD. Our key contribution is the integrated design of a tensor fiber sampling strategy and a flexible stochastic Bregman divergence-based mirror descent iterative procedure, which significantly reduces the computation and memory cost per iteration for various β. Leveraging the fiber sampling scheme and the multilinear algebraic structure of low-rank tensors, the proposed lightweight algorithm also ensures global convergence to a stationary point under mild conditions. Numerical results on synthetic and real data show that our framework attains significant computational saving compared with state-of-the-art methods. 
    more » « less