skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Excited State Dynamics of 7-Deazaguanosine and Guanosine 5’-Monophosphate
Minor structural modifications to the DNA and RNA nucleobases have a significant effect on their excited state dynamics and electronic relaxation pathways. In this study, the excited state dynamics of 7-deazaguanosine and guanosine 5′-monophosphate are investigated in aqueous solution and in a mixture of methanol and water using femtosecond broadband transient absorption spectroscopy following excitation at 267 nm. The transient spectra are collected using photon densities that ensure no parasitic multiphoton-induced signal from solvated electrons. The data can be fit satisfactorily using a two- or three-component kinetic model. By analyzing the results from steady-state, time-resolved, computational calculations, and the methanol–water mixture, the following general relaxation mechanism is proposed for both molecules, Lb → La → 1πσ*(ICT) → S0, where the 1πσ*(ICT) stands for an intramolecular charge transfer excited singlet state with significant πσ* character. In general, longer lifetimes for internal conversion are obtained for 7-deazaguanosine compared to guanosine 5′-monophosphate. Internal conversion of the 1πσ*(ICT) state to the ground state occurs on a similar time scale of a few picoseconds in both molecules. Collectively, the results demonstrate that substitution of a single nitrogen atom for a methine (C–H) group at position seven of the guanine moiety stabilizes the 1ππ* Lb and La states and alters the topology of their potential energy surfaces in such a way that the relaxation dynamics in 7-deazaguanosine are slowed down compared to those in guanosine 5′-monophosphate but not for the internal conversion of 1πσ*(ICT) state to the ground state.  more » « less
Award ID(s):
1800052
PAR ID:
10251388
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ChemRxiv
ISSN:
2573-2293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DNA strands are polymeric ligands that both protect and tune molecular-sized silver cluster chromophores. We studied single-stranded DNA C4AC4TC3XT4 with X = guanosine and inosine that form a green fluorescent Ag106+ cluster, but these two hosts are distinguished by their binding sites and the brightness of their Ag106+ adducts. The nucleobase subunits in these oligomers collectively coordinate this cluster, and fs time-resolved infrared spectra previously identified one point of contact between the C2–NH2 of the X = guanosine, an interaction that is precluded for inosine. Furthermore, this single nucleobase controls the cluster fluorescence as the X = guanosine complex is ∼2.5× dimmer. We discuss the electronic relaxation in these two complexes using transient absorption spectroscopy in the time window 200 fs–400 µs. Three prominent features emerged: a ground state bleach, an excited state absorption, and a stimulated emission. Stimulated emission at the earliest delay time (200 fs) suggests that the emissive state is populated promptly following photoexcitation. Concurrently, the excited state decays and the ground state recovers, and these changes are ∼2× faster for the X = guanosine compared to the X = inosine cluster, paralleling their brightness difference. In contrast to similar radiative decay rates, the nonradiative decay rate is 7× higher with the X = guanosine vs inosine strand. A minor decay channel via a dark state is discussed. The possible correlation between the nonradiative decay and selective coordination with the X = guanosine/inosine suggests that specific nucleobase subunits within a DNA strand can modulate cluster–ligand interactions and, in turn, cluster brightness. 
    more » « less
  2. Abstract

    It is intriguing how a mixture of organic molecules survived the prebiotic UV fluxes and evolved into the actual genetic building blocks. Scientists are trying to shed light on this issue by synthesizing nucleic acid monomers and their analogues under prebiotic Era‐like conditions and by exploring their excited state dynamics. To further add to this important body of knowledge, this study discloses new insights into the photophysical properties of protonated isoguanine, an isomorph of guanine, using steady‐state and femtosecond broadband transient absorption spectroscopies, and quantum mechanical calculations. Protonated isoguanine decays in ultrafast time scales following 292 nm excitation, consistently with the barrierless paths connecting the bright S1(ππ*) state with different internal conversion funnels. Complementary calculations for neutral isoguanine predict similar photophysical properties. These results demonstrate that protonated isoguanine can be considered photostable in contrast to protonated guanine, which exhibits 40‐fold longer excited state lifetimes.

     
    more » « less
  3. While the photophysics of closed-shell organic molecules is well established, much less is known about open-shell systems containing interacting radical pairs. In this work, we investigate the ultrafast excited state dynamics of a singlet verdazyl diradical system in solution using transient absorption (TA) spectroscopy for the first time. Following 510 nm excitation of the excitonic S0 → S1 transition, we detected TA signals in the 530–950 nm region from the S1 population that decayed exponentially within a few picoseconds to form a vibrationally hot S0* population via internal conversion. The dependence of the S1 decay rate on solvent and radical–radical distance revealed that the excited state possesses charge-transfer character and likely accesses the S0 state via torsional motion. The ultrafast internal conversion decay mechanism at play in our open-shell verdazyl diradicals is in stark contrast with other closed-shell, carbonyl-containing organic chromophores, which exhibit ultrafast intersystem crossing to produce long-lived triplet states as the major S1 decay pathway.

     
    more » « less
  4. Photostability is thought to be an inherent property of nucleobases required to survive the extreme ultraviolet radiation conditions of the prebiotic era. Previous studies have shown that absorption of ultraviolet radiation by the canonical nucleosides results in ultrafast internal conversion to the ground state, demonstrating that these nucleosides efficiently dissipate the excess electronic energy to the environment. In recent years, studies on the photophysical and photochemical properties of nucleobase derivatives have revealed that chemical substitution influences the electronic relaxation pathways of purine and pyrimidine nucleobases. It has been suggested that amino or carbonyl substitution at the C6 position could increase the photostability of the purine derivatives more than the substitution at the C2 position. This investigation aims to elucidate the excited state dynamics of 2′-deoxyisoguanosine (dIsoGuo) and isoguanosine (IsoGuo) in aqueous solution at pH 7.4 and 1.4, which contain an amino group at the C6 position and a carbonyl group at the C2 position of the purine chromophore. The study of these derivatives is performed using absorption and emission spectroscopies, broadband transient absorption spectroscopy, and density functional and time-dependent density functional levels of theory. It is shown that the primary relaxation mechanism of dIsoGuo and IsoGuo involves nonradiative decay pathways, where the population decays from the S 1 (ππ*) state through internal conversion to the ground state via two relaxation pathways with lifetimes of hundreds of femtoseconds and less than 2 ps, making these purine nucleosides photostable in aqueous solution. 
    more » « less
  5. null (Ed.)
    Ultrafast transient absorption spectroscopy reveals new excited-state dynamics following excitation of trans -azobenzene ( t -Az) and several alkyl-substituted t -Az derivatives encapsulated in a water-soluble supramolecular host–guest complex. Encapsulation increases the excited-state lifetimes and alters the yields of the trans → cis photoisomerization reaction compared with solution. Kinetic modeling of the transient spectra for unsubstituted t -Az following nπ* and ππ* excitation reveals steric trapping of excited-state species, as well as an adiabatic excited-state trans → cis isomerization pathway for confined molecules that is not observed in solution. Analysis of the transient spectra following ππ* excitation for a series of 4-alkyl and 4,4′-dialkyl substituted t -Az molecules suggests that additional crowding due to lengthening of the alkyl tails results in deeper trapping of the excited-state species, including distorted trans and cis structures. The variation of the dynamics due to crowding in the confined environment provides new evidence to explain the violation of Kasha's rule for nπ* and ππ* excitation of azobenzenes based on competition between in-plane inversion and out-of-plane rotation channels. 
    more » « less