skip to main content


Title: Methane C–H Activation by [Cu 2 O] 2+ and [Cu 3 O 3 ] 2+ in Copper-Exchanged Zeolites: Computational Analysis of Redox Chemistry and X-ray Absorption Spectroscopy
Award ID(s):
1800387
NSF-PAR ID:
10251394
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
60
Issue:
9
ISSN:
0020-1669
Page Range / eLocation ID:
6218 to 6227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Methane over‐oxidation by copper‐exchanged zeolites prevents realization of high‐yield catalytic conversion. However, there has been little description of the mechanism for methane over‐oxidation at the copper active sites of these zeolites. Using density functional theory (DFT) computations, we reported that tricopper [Cu3O3]2+active sites can over‐oxidize methane. However, the role of [Cu3O3]2+sites in methane‐to‐methanol conversion remains under debate. Here, we examine methane over‐oxidation by dicopper [Cu2O]2+and [Cu2O2]2+sites using DFT in zeolite mordenite (MOR). For [Cu2O2]2+, we considered the μ‐(η22) peroxo‐, and bis(μ‐oxo) motifs. These sites were considered in the eight‐membered (8MR) ring of MOR. μ‐(η22) peroxo sites are unstable relative to the bis(μ‐oxo) motif with a small interconversion barrier. Unlike [Cu2O]2+which is active for methane C−H activation, [Cu2O2]2+has a very large methane C−H activation barrier in the 8MR. Stabilization of methanol and methyl at unreacted dicopper sites however leads to over‐oxidation via sequential hydrogen atom abstraction steps. For methanol, these are initiated by abstraction of the CH3group, followed by OH and can proceed near 200 °C. Thus, for [Cu2O]2+and [Cu2O2]2+species, over‐oxidation is an inter‐site process. We discuss the implications of these findings for methanol selectivity, especially in comparison to the intra‐site process for [Cu3O3]2+sites and the role of Brønsted acid sites.

     
    more » « less
  2. null (Ed.)
  3. Abstract This work examines the pinning enhancement in BaZrO 3 (BZO) +Y 2 O 3 doubly-doped (DD) YBa 2 Cu 3 O 7 (YBCO) nanocomposite multilayer (DD-ML) films. The film consists of two 10 nm thin Ca 0.3 Y 0.7 Ba 2 Cu 3 O 7-x (CaY-123) spacers stacking alternatively with three BZO + Y 2 O 3 /YBCO layers of 50 nm each in thickness that contain 3 vol% of Y 2 O 3 and BZO doping in the range of 2–6 vol%. Enhanced magnetic vortex pinning and improved pinning isotropy with respect to the orientation of magnetic field (B) have been achieved in the DD-ML samples at lower BZO doping as compared to that in the single-layer counterparts (DD-SL) without the CaY-123 spacers. For example, the pinning force density ( F p ) of ∼58 GNm −3 in 2 vol.% of DD-ML film is ∼110% higher than in 2 vol% of DD-SL at 65 K and B // c -axis, which is attributed to the improved pinning efficiency by c -axis aligned BZO nanorods through diffusion of Calcium (Ca) along the tensile-strained channels at BZO nanorods/YBCO interface for improvement of the interface microstructure and hence pinning efficiency of BZO nanorods. An additional benefit is in the considerably improved J c ( θ ) and reduced J c anisotropy in the former over the entire range of the B orientations. However, at higher BZO doping, the BZO nanorods become segmented and misoriented, which may change the Ca diffusion pathways and reduce the benefit of Ca in improving the pinning efficiency of BZO nanorods. 
    more » « less