skip to main content

Title: 3D Printing Hydrogel-Based Soft and Biohybrid Actuators: A Mini-Review on Fabrication Techniques, Applications, and Challenges
Stimuli-responsive hydrogels are candidate building blocks for soft robotic applications due to many of their unique properties, including tunable mechanical properties and biocompatibility. Over the past decade, there has been significant progress in developing soft and biohybrid actuators using naturally occurring and synthetic hydrogels to address the increasing demands for machines capable of interacting with fragile biological systems. Recent advancements in three-dimensional (3D) printing technology, either as a standalone manufacturing process or integrated with traditional fabrication techniques, have enabled the development of hydrogel-based actuators with on-demand geometry and actuation modalities. This mini-review surveys existing research efforts to inspire the development of novel fabrication techniques using hydrogel building blocks and identify potential future directions. In this article, existing 3D fabrication techniques for hydrogel actuators are first examined. Next, existing actuation mechanisms, including pneumatic, hydraulic, ionic, dehydration-rehydration, and cell-powered actuation, are reviewed with their benefits and limitations discussed. Subsequently, the applications of hydrogel-based actuators, including compliant handling of fragile items, micro-swimmers, wearable devices, and origami structures, are described. Finally, challenges in fabricating functional actuators using existing techniques are discussed.
Authors:
; ; ; ; ;
Award ID(s):
2015317
Publication Date:
NSF-PAR ID:
10251505
Journal Name:
Frontiers in Robotics and AI
Volume:
8
ISSN:
2296-9144
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrogels are candidate building blocks in a wide range of biomaterial applications including soft and biohybrid robotics, microfluidics, and tissue engineering. Recent advances in embedded 3D printing have broadened the design space accessible with hydrogel additive manufacturing. Specifically, the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technique has enabled the fabrication of complex 3D structures using extremely soft hydrogels, e.g., alginate and collagen, by assembling hydrogels within a fugitive support bath. However, the low structural rigidity of FRESH printed hydrogels limits their applications, especially those that require operation in nonaqueous environments. In this study, we demonstrated long-fiber embedded hydrogel 3D printing using a multihead printing platform consisting of a custom-built fiber extruder and an open-source FRESH bioprinter with high embedding fidelity. Using this process, fibers were embedded in 3D printed hydrogel components to achieve significant structural reinforcement (e.g., tensile modulus improved from 56.78 ± 8.76 to 382.55 ± 25.29 kPa and tensile strength improved from 9.44 ± 2.28 to 45.05 ± 5.53 kPa). In addition, we demonstrated the versatility of this technique by using fibers of a wide range of sizes and material types and implementing different 2D and 3D embedding patterns, such as embedding a conical helix using electrochemicallymore »aligned collagen fiber via nonplanar printing. Moreover, the technique was implemented using low-cost material and is compatible with open-source software and hardware, which facilitates its adoption and modification for new research applications.« less
  2. Patterned deposition and 3D fabrication techniques have enabled the use of hydrogels for a number of applications including microfluidics, sensors, separations, and tissue engineering in which form fits function. Devices such as reconfigurable microvalves or implantable tissues have been created using lithography or casting techniques. Here, we present a novel open-microfluidic patterning method that utilizes surface tension forces to form hydrogel layers on top of each other, into a patterned 3D structure. We use a patterning device to form a temporary open microfluidic channel on an existing gel layer, allowing the controlled flow of unpolymerized gel in device-regions. After layer gelation and device removal, the process can be repeated iteratively to create multi-layered 3D structures. The use of open-microfluidic and surface tension-based methods to define the shape of each individual layer enables patterning to be performed with a simple pipette and with minimal dead-volume. Our method is compatible with unmodified (native) biological hydrogels, and other non-biological materials with precursor fluid properties compatible with capillary flow. With our open-microfluidic layer-by-layer fabrication method, we demonstrate the capability to build agarose, type I collagen, and polymer–peptide 3D structures featuring asymmetric designs, multiple components, overhanging features, and cell-laden regions.
  3. Colloidal nanoparticles have been widely studied and proven to have unique and superior properties compared to their bulk form and are attractive building blocks for diverse technologies, including energy conversion and storage, sensing, electronics, etc. However, transforming colloidal nanoparticles into functional devices while translating their unique properties from the nanoscale to the macroscale remains a major challenge. The development of advanced manufacturing methodologies that can convert functional nanomaterials into high-performance devices in a scalable, controllable and affordable manner presents great research opportunities and challenges for the next several decades. One promising approach to fabricate functional devices from nanoscale building blocks is additive manufacturing, such as 2D and 3D printing, owing to their capability of fast prototyping and versatile fabrication. Here, we review recent progress and methodologies for printing functional devices using colloidal nanoparticle inks with an emphasis on 2D nanomaterial-based inks. This review provides a comprehensive overview on four important and interconnected topics, including nanoparticle synthesis, ink formulation, printing methods, and device applications. New research opportunities as well as future directions are also discussed.
  4. Hydrogel scaffolds that mimic the native extracellular matrix (ECM) environment play a crucial role in tissue engineering. It has been demonstrated that cell behaviors can be affected by not only the hydrogel's physical and chemical properties, but also its three dimensional (3D) geometrical structures. In order to study the influence of 3D geometrical cues on cell behaviors as well as the maturation and function of engineered tissues, it is imperative to develop 3D fabrication techniques for creating micro and nanoscale hydrogel constructs. Among existing techniques that can effectively pattern hydrogels, two-photon polymerization (2PP)-based femtosecond laser 3D printing technology allows one to produce hydrogel structures with a resolution of 100 nm. This article reviews the basics of this technique and some of its applications in tissue engineering.
  5. Jabbari, Esmaiel (Ed.)
    This study presents novel biocompatible Polydimethylsiloxane (PDMS)-based micromechanical tweezers (μTweezers) capable of the stiffness characterization and manipulation of hydrogel-based organoids. The system showed great potential for complementing established mechanical characterization methods such as Atomic Force Microscopy (AFM), parallel plate compression (PPC), and nanoindentation, while significantly reducing the volume of valuable hydrogels used for testing. We achieved a volume reduction of ~0.22 μl/sample using the μTweezers vs. ~157 μl/sample using the PPC, while targeting high-throughput measurement of widely adopted micro-mesoscale (a few hundred μm-1500 μm) 3D cell cultures. The μTweezers applied and measured nano-millinewton forces through cantilever’ deflection with high linearity and tunability for different applications; the assembly is compatible with typical inverted optical microscopes and fit on standard tissue culture Petri dishes, allowing mechanical compression characterization of arrayed 3D hydrogel-based organoids in a high throughput manner. The average achievable output per group was 40 tests per hour, where 20 organoids and 20 reference images in one 35 mm petri dish were tested, illustrating efficient productivity to match the increasing demand on 3D organoids’ applications. The changes in stiffness of collagen I hydrogel organoids in four conditions were measured, with ovarian cancer cells (SKOV3) or without (control). The Young’s modulus ofmore »the control group (Control—day 0, E = 407± 146, n = 4) measured by PPC was used as a reference modulus, where the relative elastic compressive modulus of the other groups based on the stiffness measurements was also calculated (control-day 0, E = 407 Pa), (SKOV3-day 0, E = 318 Pa), (control-day 5, E = 528 Pa), and (SKOV3-day 5, E = 376 Pa). The SKOV3-embedded hydrogel-based organoids had more shrinkage and lowered moduli on day 0 and day 5 than controls, consistently, while SKOV3 embedded organoids increased in stiffness in a similar trend to the collagen I control from day 0 to day 5. The proposed method can contribute to the biomedical, biochemical, and regenerative engineering fields, where bulk mechanical characterization is of interest. The μTweezers will also provide attractive design and application concepts to soft membrane-micro 3D robotics, sensors, and actuators.« less