skip to main content


Title: Synthesis of Fine Cubic Li 7 La 3 Zr 2 O 12 Powders in Molten LiCl–KCl Eutectic and Facile Densification by Reversal of Li + /H + Exchange
Award ID(s):
1553519
NSF-PAR ID:
10251507
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACS Applied Energy Materials
Volume:
1
Issue:
2
ISSN:
2574-0962
Page Range / eLocation ID:
552 to 560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vertically aligned nanocomposite (VAN) thin films have shown strong potential in oxide nanoionics but are yet to be explored in detail in solid-state battery systems. Their 3D architectures are attractive because they may allow enhancements in capacity, current, and power densities. In addition, owing to their large interfacial surface areas, the VAN could serve as models to study interfaces and solid-electrolyte interphase formation. Here, we have deposited highly crystalline and epitaxial vertically aligned nanocomposite films composed of a Li x La 0.32±0.05 (Nb 0.7±0.1 Ti 0.32±0.05 )O 3±δ -Ti 0.8±0.1 Nb 0.17±0.03 O 2±δ -anatase [herein referred to as LL(Nb, Ti)O-(Ti, Nb)O 2 ] electrolyte/anode system, the first anode VAN battery system reported. This system has an order of magnitude increased Li + ionic conductivity over that in bulk Li 3x La 1/3−x NbO 3 and is comparable with the best available Li 3x La 2/3−x TiO 3 pulsed laser deposition films. Furthermore, the ionic conducting/electrically insulating LL(Nb, Ti)O and electrically conducting (Ti, Nb)O 2 phases are a prerequisite for an interdigitated electrolyte/anode system. This work opens up the possibility of incorporating VAN films into an all solid-state battery, either as electrodes or electrolytes, by the pairing of suitable materials. 
    more » « less
  2. Abstract

    The performance of all‐solid‐state batteries (ASSBs) relies on the Li+transport and stability characteristics of solid electrolytes (SEs). Li3PS4is notable for its stability against lithium metal, yet its ionic conductivity remains a limiting factor. This study leverages local structural disorder via O substitution to achieve an ionic conductivity of 1.38 mS cm−1with an activation energy of 0.34 eV for Li3PS4−xOx(x = 0.31). Optimal O substitution transforms Li+transport from 2D to 3D pathways with increased ion mobility. Li3PS3.69O0.31exhibits improvements in the critical current density and stability against Li metal and retains its electrochemical stability window compared with Li3PS4. The practical implementation of Li3PS3.69O0.31in ASSBs half‐cells, particularly when coupled with TiS2as the cathode active material, demonstrates substantially enhanced capacity and rate performance. This work elucidates the utility of introducing local structural disorder to ameliorate SE properties and highlights the benefits of strategically combining the inherent strengths of sulfides and oxides via creating oxysulfide SEs.

     
    more » « less