Gaussian processes are widely employed as versatile modelling and predictive tools in spa- tial statistics, functional data analysis, computer modelling and diverse applications of machine learning. They have been widely studied over Euclidean spaces, where they are specified using covariance functions or covariograms for modelling complex dependencies. There is a growing literature on Gaussian processes over Riemannian manifolds in order to develop richer and more flexible inferential frameworks for non-Euclidean data. While numerical approximations through graph representations have been well studied for the Mat´ern covariogram and heat kernel, the behaviour of asymptotic inference on the param- eters of the covariogram has received relatively scant attention. We focus on asymptotic behaviour for Gaussian processes constructed over compact Riemannian manifolds. Build- ing upon a recently introduced Mat´ern covariogram on a compact Riemannian manifold, we employ formal notions and conditions for the equivalence of two Mat´ern Gaussian random measures on compact manifolds to derive the parameter that is identifiable, also known as the microergodic parameter, and formally establish the consistency of the maximum like- lihood estimate and the asymptotic optimality of the best linear unbiased predictor. The circle is studied as a specific example of compact Riemannian manifolds with numerical experiments to illustrate and corroborate the theory
more »
« less
Distributed nearest-neighbor Gaussian processes
While many statistical approaches have tackled the problem of large spa- tial datasets, the issues arising from costly data movement and data stor- age have long been set aside. Having easy access to the data has been taken for granted and is now becoming an important bottleneck in the performance of statistical inference. As the availability of high resolution spatial data continues to grow, the need to develop efficient modeling techniques that leverage multi-processor and multi-storage capabilities is becoming a priority. To that end, the development of a distributed method to implement Nearest-Neighbor Gaussian Process (NNGP) models for spa- tial interpolation and inference for large datasets is of interest. The pro- posed framework retains the exact implementation of the NNGP while allowing for distributed or sequential computation of the posterior infer- ence. The method allows for any choice of grouping of the data whether it is at random or by region. As a result of this new method, the NNGP model can be implemented with an even split of the computation burden with minimum overload at the master node level.
more »
« less
- PAR ID:
- 10251513
- Date Published:
- Journal Name:
- Communications in Statistics - Simulation and Computation
- ISSN:
- 0361-0918
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Gaussian process (GP) is a staple in the toolkit of a spatial statistician. Well‐documented computing roadblocks in the analysis of large geospatial datasets using GPs have now largely been mitigated via several recent statistical innovations. Nearest neighbor Gaussian process (NNGP) has emerged as one of the leading candidates for such massive‐scale geospatial analysis owing to their empirical success. This article reviews the connection of NNGP to sparse Cholesky factors of the spatial precision (inverse‐covariance) matrix. Focus of the review is on these sparse Cholesky matrices which are versatile and have recently found many diverse applications beyond the primary usage of NNGP for fast parameter estimation and prediction in the spatial (generalized) linear models. In particular, we discuss applications of sparse NNGP Cholesky matrices to address multifaceted computational issues in spatial bootstrapping, simulation of large‐scale realizations of Gaussian random fields, and extensions to nonparametric mean function estimation of a GP using random forests. We also review a sparse‐Cholesky‐based model for areal (geographically aggregated) data that addresses long‐established interpretability issues of existing areal models. Finally, we highlight some yet‐to‐be‐addressed issues of such sparse Cholesky approximations that warrant further research. This article is categorized under:Algorithms and Computational Methods > AlgorithmsAlgorithms and Computational Methods > Numerical Methodsmore » « less
-
Abstract Bayesian hierarchical models allow ecologists to account for uncertainty and make inference at multiple scales. However, hierarchical models are often computationally intensive to fit, especially with large datasets, and researchers face trade‐offs between capturing ecological complexity in statistical models and implementing these models.We present a recursive Bayesian computing (RB) method that can be used to fit Bayesian models efficiently in sequential MCMC stages to ease computation and streamline hierarchical inference. We also introduce transformation‐assisted RB (TARB) to create unsupervised MCMC algorithms and improve interpretability of parameters. We demonstrate TARB by fitting a hierarchical animal movement model to obtain inference about individual‐ and population‐level migratory characteristics.Our recursive procedure reduced computation time for fitting our hierarchical movement model by half compared to fitting the model with a single MCMC algorithm. We obtained the same inference fitting our model using TARB as we obtained fitting the model with a single algorithm.For complex ecological statistical models, like those for animal movement, multi‐species systems, or large spatial and temporal scales, the computational demands of fitting models with conventional computing techniques can limit model specification, thus hindering scientific discovery. Transformation‐assisted RB is one of the most accessible methods for reducing these limitations, enabling us to implement new statistical models and advance our understanding of complex ecological phenomena.more » « less
-
With the rise of data science, there has been a sharp increase in data-driven techniques that rely on both real and synthetic data. At the same time, there is a growing interest from the scientific com- munity in the reproducibility of results. Some conferences include this explicitly in their review forms or give special badges to repro- ducible papers. This tutorial describes two systems that facilitate the design of reproducible experiments on both real and synthetic data. UCR-Star is an interactive repository that hosts terabytes of open geospatial data. In addition to the ability to explore and visu- alize this data, UCR-Star makes it easy to share all or parts of these datasets in many standard formats ensuring that other researchers can get the same exact data mentioned in the paper. Spider is a spa- tial data generator that generates standardized spatial datasets with full control over the data characteristics which further promotes the reproducibility of results. This tutorial will be organized into two parts. The first part will exhibit the key features of UCR-star and Spider where participants can get hands-on experience in in- teracting with real spatial datasets, generating synthetic data with varying distributions, and downloading them to a local machine or a remote server. The second part will explore the integration of both UCR-Star and Spider into existing systems such as QGIS and Apache AsterixDB.more » « less
-
This paper presents a solution to the approximate k-means clustering problem for very large distributed datasets. Distributed data models have gained popularity in recent years following the efforts of commercial, academic and government organizations, to make data more widely accessible. Due to the sheer volume of available data, in-memory single-core computation quickly becomes infeasible, requiring distributed multi-processing. Our solution achieves comparable clustering performance to other popular clustering algorithms, with improved overall complexity growth while being amenable to distributed processing frameworks such as Map-Reduce. Our solution also maintains certain guarantees regarding data privacy deanonimization.more » « less
An official website of the United States government

