skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host
Abstract Toxoplasma gondiiis hypothesized to manipulate the behavior of warm-blooded hosts to promote trophic transmission into the parasite’s definitive feline hosts. A key prediction of this hypothesis is thatT. gondiiinfections of non-feline hosts are associated with costly behavior towardT. gondii’s definitive hosts; however, this effect has not been documented in any of the parasite’s diverse wild hosts during naturally occurring interactions with felines. Here, three decades of field observations reveal thatT. gondii-infected hyena cubs approach lions more closely than uninfected peers and have higher rates of lion mortality. We discuss these results in light of 1) the possibility that hyena boldness represents an extended phenotype of the parasite, and 2) alternative scenarios in whichT. gondiihas not undergone selection to manipulate behavior in host hyenas. Both cases remain plausible and have important ramifications forT. gondii’s impacts on host behavior and fitness in the wild.  more » « less
Award ID(s):
1853934
PAR ID:
10251635
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Classical theory suggests that parasites will exhibit higher fitness in sympatric relative to allopatric host populations (local adaptation). However, evidence for local adaptation in natural host–parasite systems is often equivocal, emphasizing the need for infection experiments conducted over realistic geographic scales and comparisons among species with varied life history traits. Here, we used infection experiments to test how two trematode (flatworm) species (Paralechriorchis syntomenteraandRibeiroia ondatrae) with differing dispersal abilities varied in the strength of local adaptation to their amphibian hosts. Both parasites have complex life cycles involving sequential transmission among aquatic snails, larval amphibians and vertebrate definitive hosts that control dispersal across the landscape. By experimentally pairing 26 host‐by‐parasite population infection combinations from across the western USA with analyses of host and parasite spatial genetic structure, we found that increasing geographic distance—and corresponding increases in host population genetic distance—reduced infection success forP. syntomentera, which is dispersed by snake definitive hosts. For the avian‐dispersedR. ondatrae, in contrast, the geographic distance between the parasite and host populations had no influence on infection success. Differences in local adaptation corresponded to parasite genetic structure; although populations ofP. syntomenteraexhibited ~10% mtDNA sequence divergence, those ofR. ondatraewere nearly identical (<0.5%), even across a 900 km range. Taken together, these results offer empirical evidence that high levels of dispersal can limit opportunities for parasites to adapt to local host populations. 
    more » « less
  2. Abstract Juveniles are typically less resistant (more susceptible) to infectious disease than adults, and this difference in susceptibility can help fuel the spread of pathogens in age‐structured populations. However, evolutionary explanations for this variation in resistance across age remain to be tested.One hypothesis is that natural selection has optimized resistance to peak at ages where disease exposure is greatest. A central assumption of this hypothesis is that hosts have the capacity to evolve resistance independently at different ages. This would mean that host populations have (a) standing genetic variation in resistance at both juvenile and adult stages, and (b) that this variation is not strongly correlated between age classes so that selection acting at one age does not produce a correlated response at the other age.Here we evaluated the capacity of three wild plant species (Silene latifolia,S. vulgarisandDianthus pavonius) to evolve resistance to their anther‐smut pathogens (Microbotryumfungi), independently at different ages. The pathogen is pollinator transmitted, and thus exposure risk is considered to be highest at the adult flowering stage.Within each species we grew families to different ages, inoculated individuals with anther smut, and evaluated the effects of age, family and their interaction on infection.In two of the plant species,S. latifoliaandD. pavonius, resistance to smut at the juvenile stage was not correlated with resistance to smut at the adult stage. In all three species, we show there are significant age × family interaction effects, indicating that age specificity of resistance varies among the plant families.Synthesis. These results indicate that different mechanisms likely underlie resistance at juvenile and adult stages and support the hypothesis that resistance can evolve independently in response to differing selection pressures as hosts age. Taken together our results provide new insight into the structure of genetic variation in age‐dependent resistance in three well‐studied wild host–pathogen systems. 
    more » « less
  3. Abstract Echinococcus multilocularisis a zoonotic cestode that uses canids as definitive hosts and rodents as intermediate hosts. In humans, this parasite is the causative agent of alveolar echinococcosis. Recently, its range has been expanding across the Northern Hemisphere, and it is increasingly detected in wild canids, domestic dogs, and humans across Canada and the United States. While this expansion has been documented in isolated studies across the continent, a lack of routine sampling in wildlife hinders our ability to anticipate and mitigate further spread ofE. multilocularis. We confirmed the presence ofE. multilocularisin Washington State, USA, using a combination of morphological and molecular techniques across carcasses and field-collected scats of coyotes (Canis latrans), this region’s most common wild canid. Morphological identification of adult worms was confirmed by next-generation sequencing. Over a third of all samples tested positive forE. multiloculariswhen all methodologies were combined. Sequencing revealed a haplotype ofE. multilocularismatching a documented haplotype originally of European origin in British Columbia, Canada. Our study provides the first confirmation ofE. multilocularisin a wild host on the west coast of the U.S and provides additional haplotype information crucial to tracking the geographical expansion of the parasite. We also provide a new next-generation sequencing primer targeting cestodes of canids. The difference in amplification between intestinal and fecal samples suggests that non-invasive fecal sampling using DNA metabarcoding—a popular method of helminth surveillance —may lead to underestimation of prevalence, hindering control measures. The global significance of these findings extends beyond North America;E. multilocularisis a major public health concern in Europe and Asia, where alveolar echinococcosis is increasingly diagnosed in humans. Our study highlights the urgent need for increased surveillance and improved diagnostic strategies worldwide, particularly in regions with significant human-wildlife contact. Author summaryParasites that are transmitted between wildlife, domestic animals, and people are an important part of global health. One such parasite isEchinococcus multilocularis, a small tapeworm of canids that can cause a severe, life-threatening disease in humans called alveolar echinococcosis. Many wild canid hosts of the parasite, such as coyotes, overlap significantly with domestic dogs, which facilitates transmission to humans. In Europe, Asia, and Arctic regions of North America,E. multilocularishas long been recognized as a major public health problem. In recent decades its range has expanded across the Northern Hemisphere, raising concern. In this study, we discoveredE. multilocularisin coyotes in a densely populated area of Washington State, USA — the first detection ofE. multilocularisin a wild host in the region. More than one-third of our coyote samples containedE. multilocularis, confirming that it is widespread in the area. Genetic testing showed that the strain we detected matched one previously found in Canada, originally from Europe. Our findings underscore the importance of monitoringE. multilocularisand other parasites in wildlife so that emerging public health threats can be detected early, reducing risk to people and pets. 
    more » « less
  4. Phagocytosis is a critical immune function for infection control and tissue homeostasis. During phagocytosis, pathogens are internalized and degraded in phagolysosomes. For pathogens that evade immune degradation, the prevailing view is that virulence factors are required to disrupt the biogenesis of phagolysosomes. In contrast, we present here that physical forces from motile pathogens during cell entry divert them away from the canonical degradative pathway. This altered fate begins with the force-induced remodeling of the phagocytic synapse formation. We used the parasiteToxoplasma gondiias a model because liveToxoplasmaactively invades host cells using gliding motility. To differentiate the effects of physical forces from virulence factors in phagocytosis, we employed magnetic forces to induce propulsive entry of inactivatedToxoplasmainto macrophages. Experiments and computer simulations show that large propulsive forces hinder productive activation of receptors by preventing their spatial segregation from phosphatases at the phagocytic synapse. Consequently, the inactivated parasites are engulfed into vacuoles that fail to mature into degradative units, similar to the live motile parasite’s intracellular pathway. Using yeast cells and opsonized beads, we confirmed that this mechanism is general, not specific to the parasite used. These results reveal new aspects of immune evasion by demonstrating how physical forces during active cell entry, independent of virulence factors, enable pathogens to circumvent phagolysosomal degradation. 
    more » « less
  5. Abstract Identifying the factors that affect host–parasite interactions is essential for understanding the ecology and dynamics of vector‐borne diseases and may be an important component of predicting human disease risk. Characteristics of hosts themselves (e.g., body condition, host behavior, immune defenses) may affect the likelihood of parasitism. However, despite highly variable rates of parasitism and infection in wild populations, identifying widespread links between individual characteristics and heterogeneity in parasite acquisition has proven challenging because many zoonoses exist over wide geographic extents and exhibit both spatial and temporal heterogeneity in prevalence and individual and population‐level effects. Using seven years of data collected by the National Ecological Observatory Network (NEON), we examined relationships among individual host condition, behavior, and parasitism byIxodidticks in a keystone host species, the white‐footed mouse,Peromyscus leucopus. We found that individual condition, specifically sex, body mass, and reproductive condition, had both direct and indirect effects on parasitism by ticks, but the nature of these effects differed for parasitism by larval versus nymphal ticks. We also found that condition differences influenced rodent behavior, and behavior directly affected the rates of parasitism, with individual mice that moved farther being more likely to carry ticks. This study illustrates how individual‐level data can be examined using large‐scale datasets to draw inference and uncover broad patterns in host–parasite encounters at unprecedented spatial scales. Our results suggest that intraspecific variation in the movement ecology of hosts may affect host–parasite encounter rates and, ultimately, alter zoonotic disease risk through anthropogenic modifications and natural environmental conditions that alter host space use. 
    more » « less