skip to main content


Title: Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host
Abstract

Toxoplasma gondiiis hypothesized to manipulate the behavior of warm-blooded hosts to promote trophic transmission into the parasite’s definitive feline hosts. A key prediction of this hypothesis is thatT. gondiiinfections of non-feline hosts are associated with costly behavior towardT. gondii’s definitive hosts; however, this effect has not been documented in any of the parasite’s diverse wild hosts during naturally occurring interactions with felines. Here, three decades of field observations reveal thatT. gondii-infected hyena cubs approach lions more closely than uninfected peers and have higher rates of lion mortality. We discuss these results in light of 1) the possibility that hyena boldness represents an extended phenotype of the parasite, and 2) alternative scenarios in whichT. gondiihas not undergone selection to manipulate behavior in host hyenas. Both cases remain plausible and have important ramifications forT. gondii’s impacts on host behavior and fitness in the wild.

 
more » « less
Award ID(s):
1853934
PAR ID:
10251635
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Toxoplasma gondiiis a protozoan parasite capable of infecting any warm-blooded species and can increase risk-taking in intermediate hosts. Despite extensive laboratory research on the effects ofT. gondiiinfection on behaviour, little is understood about the effects of toxoplasmosis on wild intermediate host behavior. Yellowstone National Park, Wyoming, USA, has a diverse carnivore community including gray wolves (Canis lupus) and cougars (Puma concolor), intermediate and definitive hosts ofT. gondii, respectively. Here, we used 26 years of wolf behavioural, spatial, and serological data to show that wolf territory overlap with areas of high cougar density was an important predictor of infection. In addition, seropositive wolves were more likely to make high-risk decisions such as dispersing and becoming a pack leader, both factors critical to individual fitness and wolf vital rates. Due to the social hierarchy within a wolf pack, we hypothesize that the behavioural effects of toxoplasmosis may create a feedback loop that increases spatial overlap and disease transmission between wolves and cougars. These findings demonstrate that parasites have important implications for intermediate hosts, beyond acute infections, through behavioural impacts. Particularly in a social species, these impacts can surge beyond individuals to affect groups, populations, and even ecosystem processes.

     
    more » « less
  2. Summary

    TheToxoplasma gondiilocusmitochondrial association factor 1(MAF1) encodes multiple paralogs, some of which mediate host mitochondrial association (HMA). Previous work showed that HMA was a trait that arose inT. gondiithrough neofunctionalization of an ancestral MAF1 ortholog. Structural analysis of HMA‐competent and incompetent MAF1 paralogs (MAF1b and MAF1a, respectively) revealed that both paralogs harbor an ADP ribose binding macro‐domain, with comparatively low (micromolar) affinity for ADP ribose. Replacing the 16 C‐terminal residues of MAF1b with those of MAF1a abrogated HMA, and we also show that only three residues in the C‐terminal helix are required for MAF1‐mediated HMA. Importantly these same three residues are also required for thein vivogrowth advantage conferred by MAF1b, providing a definitive link betweenin vivoproliferation and manipulation of host mitochondria. Co‐immunoprecipitation assays reveal that the ability to interact with the mitochondrial MICOS complex is shared by HMA‐competent and incompetent MAF1 paralogs and mutants. The weak ADPr coordination and ability to interact with the MICOS complex shared between divergent paralogs may represent modular ancestral functions for this tandemly expanded and diversifiedT. gondiilocus.

     
    more » « less
  3. Abstract

    Classical theory suggests that parasites will exhibit higher fitness in sympatric relative to allopatric host populations (local adaptation). However, evidence for local adaptation in natural host–parasite systems is often equivocal, emphasizing the need for infection experiments conducted over realistic geographic scales and comparisons among species with varied life history traits. Here, we used infection experiments to test how two trematode (flatworm) species (Paralechriorchis syntomenteraandRibeiroia ondatrae) with differing dispersal abilities varied in the strength of local adaptation to their amphibian hosts. Both parasites have complex life cycles involving sequential transmission among aquatic snails, larval amphibians and vertebrate definitive hosts that control dispersal across the landscape. By experimentally pairing 26 host‐by‐parasite population infection combinations from across the western USA with analyses of host and parasite spatial genetic structure, we found that increasing geographic distance—and corresponding increases in host population genetic distance—reduced infection success forPsyntomentera, which is dispersed by snake definitive hosts. For the avian‐dispersedR. ondatrae, in contrast, the geographic distance between the parasite and host populations had no influence on infection success. Differences in local adaptation corresponded to parasite genetic structure; although populations ofPsyntomenteraexhibited ~10% mtDNA sequence divergence, those ofR. ondatraewere nearly identical (<0.5%), even across a 900 km range. Taken together, these results offer empirical evidence that high levels of dispersal can limit opportunities for parasites to adapt to local host populations.

     
    more » « less
  4. Abstract

    Across existing fish host–parasite literature, endoparasites were depleted in δ15N compared to their hosts, while ectoparasitic values demonstrated enrichment, depletion and equivalence relative to their hosts. δ13C enrichment varied extensively for both endo‐ and ectoparasites across taxa and host tissues. In our case study, sea lice (Lepeophtheirus salmonis) were enriched in δ15N relative to their farmed Atlantic salmon (Salmo salar) hosts, although the value contradicted the average that is currently assumed across the animal kingdom. Common fish lice (Argulus foliaceus) did not show a consistent trend in δ15N compared to their wildS. salarhosts. Both parasitic species had a range of δ13C enrichment patterns relative to their hosts. Farmed and wildS. salarhad contrasting δ13C and δ15N, and signals varied across muscle, fin and skin within both groups.L. salmonisandA. foliaceussubsequently had unique δ13C and δ15N, andL. salmonisfrom opposite US coasts differed in δ15N. Given the range of enrichment patterns that were exhibited across the literature and in our study system, trophic dynamics from host to parasite do not conform to traditional prey to predator standards. Furthermore, there does not appear to be a universal enrichment pathway for δ13C nor δ15N in parasitic relationships, which emphasizes the need to investigate host–parasite linkages across species.

     
    more » « less
  5. Abstract

    Juveniles are typically less resistant (more susceptible) to infectious disease than adults, and this difference in susceptibility can help fuel the spread of pathogens in age‐structured populations. However, evolutionary explanations for this variation in resistance across age remain to be tested.

    One hypothesis is that natural selection has optimized resistance to peak at ages where disease exposure is greatest. A central assumption of this hypothesis is that hosts have the capacity to evolve resistance independently at different ages. This would mean that host populations have (a) standing genetic variation in resistance at both juvenile and adult stages, and (b) that this variation is not strongly correlated between age classes so that selection acting at one age does not produce a correlated response at the other age.

    Here we evaluated the capacity of three wild plant species (Silene latifolia,S. vulgarisandDianthus pavonius) to evolve resistance to their anther‐smut pathogens (Microbotryumfungi), independently at different ages. The pathogen is pollinator transmitted, and thus exposure risk is considered to be highest at the adult flowering stage.

    Within each species we grew families to different ages, inoculated individuals with anther smut, and evaluated the effects of age, family and their interaction on infection.

    In two of the plant species,S. latifoliaandD. pavonius, resistance to smut at the juvenile stage was not correlated with resistance to smut at the adult stage. In all three species, we show there are significant age × family interaction effects, indicating that age specificity of resistance varies among the plant families.

    Synthesis. These results indicate that different mechanisms likely underlie resistance at juvenile and adult stages and support the hypothesis that resistance can evolve independently in response to differing selection pressures as hosts age. Taken together our results provide new insight into the structure of genetic variation in age‐dependent resistance in three well‐studied wild host–pathogen systems.

     
    more » « less