skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Nano‐Optical Tweezers: Methods and Applications for Trapping Single Molecules and Nanoparticles
Abstract

Optical tweezers were developed in 1970 by Arthur Ashkin as a tool for the manipulation of micron‐sized particles. Ashkin's original design was then adapted for a variety of purposes, such as trapping and manipulation of biological materials[1]and the laser cooling of atoms.[2,3]More recent development has led to nano‐optical tweezers, for trapping particles on the scale of only a few nanometers, and holographic tweezers, which allow for dynamic control of multiple traps in real‐time. These alternatives to conventional optical tweezers have made it possible to trap single molecules and to perform a variety of studies on them. Presented here is a review of recent developments in nano‐optical tweezers and their current and future applications.

 
more » « less
NSF-PAR ID:
10251707
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhysChem
Volume:
22
Issue:
14
ISSN:
1439-4235
Page Range / eLocation ID:
p. 1409-1420
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical tweezers have emerged as a powerful tool for the non-invasive trapping and manipulation of colloidal particles and biological cells1,2. However, the diffraction limit precludes the low-power trapping of nanometre-scale objects. Substantially increasing the laser power can provide enough trapping potential depth to trap nanoscale objects. Unfortunately, the substantial optical intensity required causes photo-toxicity and thermal stress in the trapped biological specimens3. Low-power near-field nano-optical tweezers comprising plasmonic nanoantennas and photonic crystal cavities have been explored for stable nanoscale object trapping4,5,6,7,8,9,10,11,12,13. However, the demonstrated approaches still require that the object is trapped at the high-light-intensity region. We report a new kind of optically controlled nanotweezers, called opto-thermo-electrohydrodynamic tweezers, that enable the trapping and dynamic manipulation of nanometre-scale objects at locations that are several micrometres away from the high-intensity laser focus. At the trapping locations, the nanoscale objects experience both negligible photothermal heating and light intensity. Opto-thermo-electrohydrodynamic tweezers employ a finite array of plasmonic nanoholes illuminated with light and an applied a.c. electric field to create the spatially varying electrohydrodynamic potential that can rapidly trap sub-10 nm biomolecules at femtomolar concentrations on demand. This non-invasive optical nanotweezing approach is expected to open new opportunities in nanoscience and life science by offering an unprecedented level of control of nano-sized objects, including photo-sensitive biological molecules. 
    more » « less
  2. Since its advent in the 1970s, optical tweezers have been widely deployed as a preferred non-contact technique for manipulating microscale objects. On-chip integrated optical tweezers, which afford significant size, weight, and cost benefits, have been implemented, relying upon near-field evanescent waves. As a result, these tweezers are only capable of manipulation in near-surface regions and often demand high power since the evanescent interactions are relatively weak. We introduce on-chip optical tweezers based on freeform micro-optics, which comprise optical reflectors or refractive lenses integrated on waveguide end facets via two-photon polymerization. The freeform optical design offers unprecedented degrees of freedom to design optical fields with strong three-dimensional intensity gradients, useful for trapping and manipulating suspended particles in an integrated chip-scale platform. We demonstrate the design, fabrication, and measurement of both reflective and refractive micro-optical tweezers. The reflective tweezers feature a remarkably low trapping threshold power, and the refractive tweezers are particularly useful for multiparticle trapping and interparticle interaction analysis. Our integrated micro-optical tweezers uniquely combine a compact footprint, broadband operation, high trapping efficiency, and scalable integration with planar photonic circuits. This class of tweezers is promising for on-chip sensing, cell assembly, particle dynamics analysis, and ion trapping.

     
    more » « less
  3. Abstract Opto-thermoelectric tweezers present a new paradigm for optical trapping and manipulation of particles using low-power and simple optics. New real-life applications of opto-thermoelectric tweezers in areas such as biophysics, microfluidics, and nanomanufacturing will require them to have large-scale and high-throughput manipulation capabilities in complex environments. Here, we present opto-thermoelectric speckle tweezers, which use speckle field consisting of many randomly distributed thermal hotspots that arise from an optical speckle pattern to trap multiple particles over large areas. By further integrating the speckle tweezers with a microfluidic system, we experimentally demonstrate their application for size-based nanoparticle filtration. With their low-power operation, simplicity, and versatility, opto-thermoelectric speckle tweezers will broaden the applications of optical manipulation techniques. 
    more » « less
  4. Computationally modeling the behavior of wavelength-sized non-spherical particles in optical tweezers can give insight into the existence and stability of trapping equilibria as well as the optical manipulation of such particles more broadly. Here, we report Brownian dynamics simulations of non-spherical particles that account for detailed optical, hydrodynamic, and thermal interactions. We use aT-matrix formalism to calculate the optical forces and torques exerted by focused laser beams on clusters of wavelength-sized spheres, and we incorporate detailed diffusion tensors that capture the anisotropic Brownian motion of the clusters. For two-sphere clusters whose size is comparable to or larger than the wavelength, we observe photokinetic effects in elliptically-polarized beams. We also demonstrate that multiple trapping equilibria exist for a highly asymmetric chiral cluster of seven spheres. Our simulations may lead to practical suggestions for optical trapping and manipulation as well as a deeper understanding of the underlying physics.

     
    more » « less
  5. Optical tweezers can control the position and orientation of individual colloidal particles in solution. Such control is often desirable but challenging for single-particle spectroscopy and microscopy, especially at the nanoscale. Functional nanoparticles that are optically trapped and manipulated in a three-dimensional (3D) space can serve as freestanding nanoprobes, which provide unique prospects for sensing and mapping the surrounding environment of the nanoparticles and studying their interactions with biological systems. In this perspective, we will first describe the optical forces underlying the optical trapping and manipulation of microscopic particles, then review the combinations and applications of different spectroscopy and microscopy techniques with optical tweezers. Finally, we will discuss the challenges of performing spectroscopy and microscopy on single nanoparticles with optical tweezers, the possible routes to address these challenges, and the new opportunities that will arise.

     
    more » « less