skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Ripple Effect of Epistemological Framing: Linking Epistemology, Teacher Moves, and Student Learning
This work explores epistemological framing dynamics in a middle school biology classroom and how such dynamics shape student engagement and learning opportunities. Our data sources include student and teacher interviews, classroom videos of three multi-day lessons with a focus on argumentation, and work products collected across one academic year. Our analysis reveals that while the teacher made room for students to generate and negotiate ideas, brief but influential moves emphasizing single correct answers undermined students’ sensemaking. These instructional moves, while only occupying a small amount of instructional time, framed students’ sensemaking efforts not as a process to seek the strongest explanation from a number of possibilities, but rather to wait for the correct explanation to be revealed from an authority.  more » « less
Award ID(s):
1720587
PAR ID:
10251794
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Annual meeting program American Educational Research Association
ISSN:
0163-9676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This study explores the epistemological framing dynamics in one middle school biology classroom and how those dynamics shape students’ collaborative sensemaking in science. We trace how the teacher’s instructional moves shaped students’ framing, and the ways in which that framing influenced students’ learning. Our analysis shows that while the teacher framed small group argumentation activities as spaces for students to generate and negotiate ideas, brief but influential moves at the end of the lesson, which emphasized the correct answer, undermined students’ sensemaking and intellectual authority. These findings have implications for the design of teacher education highlighting the need to promote teachers’ awareness of the impact of their instructional moves in terms of how students frame their efforts in the classroom. 
    more » « less
  2. Instructional shifts required by equitable, reform‐based science instruction are challenging, especially in the elementary context. Such shifts require professional development (PD) that supports teacher internalization of new pedagogical strategies as well as changes in beliefs about how students learn. Because of this complexity, many PD programs struggle to foster lasting pedagogical shifts, necessitating further investigation into why some teachers successfully embrace reform practices while others do not. This qualitative study uses a nonlinear, iterative model of teacher learning (Interconnected Model of Professional Growth; Clarke & Hollingsworth, 2002) alongside professional noticing to help understand why elementary teachers in science PD differentially make sense of and internalize new pedagogies. Findings indicate that teachers most likely to adopt reform‐based instructional practices from the PD were those who clearly connected student learning to their instructional moves. In addition, teachers who more actively attended to student sensemaking and productive struggle took up pedagogies from the PD more substantively than did colleagues who attended solely to student engagement and affect. Finally, teachers who attended to and valued novel ideas from students’ lived experiences were more likely to change their beliefs about students’ capacity to learn science, and thus more likely to see the value of instructional practices from the PD. In sum, structuring PD to build on these specific teacher noticing skills can encourage more teachers to move away from traditional, teacher‐directed instructional practice, and more fully support reform‐based instructional practices. 
    more » « less
  3. Within the science education reform movement, there have been long standing calls initiated to attend to equity in the science classroom. These calls are sought to de-settle and advance the broad strokes of “equity for all” into deeper, more meaningful actions, considering the way we view equity and how equitable practices unfold in the classroom. Productive science discourse or productive science talk is just one instructional practice used and discussed which leverages students as sensemakers. This study seeks to better understand productive science talk as a practice of equitation instruction. In examining Ms. Savannah’s practice, a high school biology teacher, two major findings emerged around the use of productive talk: (1) pattern of moves to leverage student ideas and (2) timing of moves to stimulate interest or motivation. These talk moves and timing gave insight into talk as both having the ability to hinder and foster student ideas and provide an initial “on-ramp” for students’ voice to be heard, taken up and have accountability in the classroom. This work continues to sustain a call toward attention to equity and a need to evaluate the equity-aligned practices that are fore-fronted in PDs and workshops. 
    more » « less
  4. null (Ed.)
    Inclusion in mathematics education is strongly tied to discourse rich classrooms, where students ideas play a central role. Talk moves are specific discursive practices that promote inclusive and equitable participation in classroom discussions. This paper describes the development of the TalkMoves application, which provides teachers with detailed feedback on their usage of talk moves based on accountable talk theory. Building on our recent work to automate the classification of teacher talk moves, we have expanded the application to also include feedback on a set of student talk moves. We present results from several deep learning models trained to classify student sentences into student talk moves with performance up to 73% F1. The classroom data used for training these models were collected from multiple sources that were pre-processed and annotated by highly reliable experts. We validated the performance of the model on an out-of-sample dataset which included 166 classroom transcripts collected from teachers piloting the application. 
    more » « less
  5. Sensemaking is conceptualized as a trajectory to develop better understanding and is advocated as one of the fundamental practices in science education. However, the field is lacking of a framework to view the prolonged process of sensemaking that starts from a raise of uncertainty of a target phenomenon to a grasping of a better understanding of a target phenomenon. The process requires teachers to recognize the role of scientific uncertainty in different phases of sensemaking and develop responsive instructional supports to help students navigate the uncertainties. With an attention on student scientific uncertainty as a potential driver of the trajectory of sensemaking, this study aims to identify different phases of sensemaking that can be developed with students’ scientific uncertainty. This study especially attends to two types of scientific uncertainty—conceptual and epistemic uncertainties. Conceptual uncertainty refers to student struggle of using conceptual understanding (e.g., mastery of content and everyday knowledge) to respond to an encountered phenomenon. Epistemic uncertainty emerges from struggles in using epistemic understanding to generate new ideas. Based on the multiple case study method, we examined sensemaking activities in two Korean science classrooms and one American science classroom and identified three phases of sensemaking: (a) focusing on a driving question related to a target phenomenon, (b) delving into multiple resources to develop plausible explanation(s), and (c) examining the successfulness of the new understanding and concretizing it. Based on the findings, we discuss two emerging themes. First, sensemaking progresses through three distinctive phases driven by students’ dynamically evolving scientific uncertainty. Second, attending to both epistemic and conceptual uncertainties can support developing sensemaking coherent with students’ view. 
    more » « less