skip to main content


Search for: All records

Award ID contains: 1720587

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent instructional reforms in science education aim to change the way students engage in learning in the discipline, as they describe that students are to engage with disciplinary core ideas, crosscutting concepts, and the practices of science to make sense of phenomena (NRC, 2012). For such sensemaking to become a reality, there is a need to understand the ways in which students' thinking can be maintained throughout the trajectory of science lessons. Past research in this area tends to foreground either the curriculum or teachers' practices. We propose a more comprehensive view of science instruction, one that requires attention to teachers' practice, the instructional task, and students' engagement. In this study, by examining the implementation of the same lesson across three different classrooms, our analysis of classroom videos and artifacts of students' work revealed how the interaction of teachers' practices, students' intellectual engagement, and a cognitively demanding task together support rigorous instruction. Our analyses shed light on their interaction that shapes opportunities for students' thinking and sensemaking throughout the trajectory of a science lesson. The findings provide implications for ways to promote rigorous opportunities for students' learning in science classrooms.

     
    more » « less
  2. This paper examined changes in students' biological reasoning, scientific sensemaking, valuing of science, and fascination in science over the course of a school year after their teacher participated in one of the two professional development programs. One professional development (PD) group emphasized teacher collaboration in revising materials for their classroom, while the other emphasized revision of materials without collaboration among teachers. Results from repeated measures ANOVA showed improvements in students' biological reasoning from the beginning to end of the school year when in classrooms led by teachers who participated in the collaboration-focused PD. Students' scientific sensemaking, valuing of science, or science fascination remained stable across the school year across both PD groups. 
    more » « less
  3. Using the IQA-SOR instrument, we analyzed participating teachers' classroom implementation of instructional resources and models. Teachers who collaboratively designed their materials for the focal lessons demonstrated more rigorous implementation, while those who only experienced the focal lessons during the PD experience did not implement as rich of instruction. However, all participating teachers did show strengths in implementing particular aspects of the focal lessons. 
    more » « less
  4. Researchers of teacher education have long advocated that one of the most essential supports to teacher learning of novel instruction practices comes from collaboration. Much of the collaboration literature focuses on the outcomes of teacher collaboration without providing insight into the nature of collaborations. In this work, we seek to understand the collaboration that occurred between five school biology teachers as they designed, enacted, and reflected on a lesson emerging from professional development focused on productive talk. The questions guiding this work include: What was the focus of the LCD teacher group’s collaboration?, What was the nature of the LCD teacher group’s collaboration? and, What role did the group’s collaboration serve in supporting each teacher’s practice? We found that the collaborative space opened-up opportunities for teachers to discuss their practice for the lesson and outside of the lesson itself. Salient to the collaborative space was a sense of support between the teachers as teachers intensively listened to one another, normalized a problematic issue as well as the emotions that they were experiencing by relating to each other, providing advice and words of encouragement. Teachers’ collaboration eased the work of designing and enacting a conceptually challenging lesson. 
    more » « less
  5. Research on students’ engagement suggests that epistemic affect--that is, the feelings and emotions experienced in the epistemic work of making sense of phenomena-- should be recognized as a central component of meaningful disciplinary engagement in science. These feelings and emotions are not tangential by-products, but are essential components of disciplinary engagement. Yet, there is still much to understand about how educators can attend and respond to students’ emotions in ways that support disciplinary engagement in science. To inform these efforts, we follow one high school Biology teacher, Amelia, to answer the following question: How does Amelia attend to and support her students’ emotions in ways that support their disciplinary engagement? Data examined include teacher interviews and classroom recordings of two multi-day science lessons. We found that the teacher worked to support her students’ emotions in moments of uncertainty in at least two ways: (1) by attending to these emotions directly, and (2) by sharing her personal experiences and feelings in engaging in similar activities as a science learner. We describe how Amelia made herself vulnerable to students, describing her own struggles in making sense of phenomena, in turn supporting her students to normalize these experiences as part of doing science. 
    more » « less
  6. Within the science education reform movement, there have been long standing calls initiated to attend to equity in the science classroom. These calls are sought to de-settle and advance the broad strokes of “equity for all” into deeper, more meaningful actions, considering the way we view equity and how equitable practices unfold in the classroom. Productive science discourse or productive science talk is just one instructional practice used and discussed which leverages students as sensemakers. This study seeks to better understand productive science talk as a practice of equitation instruction. In examining Ms. Savannah’s practice, a high school biology teacher, two major findings emerged around the use of productive talk: (1) pattern of moves to leverage student ideas and (2) timing of moves to stimulate interest or motivation. These talk moves and timing gave insight into talk as both having the ability to hinder and foster student ideas and provide an initial “on-ramp” for students’ voice to be heard, taken up and have accountability in the classroom. This work continues to sustain a call toward attention to equity and a need to evaluate the equity-aligned practices that are fore-fronted in PDs and workshops. 
    more » « less
  7. Reform efforts targeting science instruction emphasize that students should develop scientific proficiency that empowers them to collaboratively negotiate science ideas as they develop meaningful understandings about science phenomena through science practices. The lessons teachers design and enact play a critical role in engaging students in rigorous science learning. Collaborative design, in which teachers work together to design, enact, and reflect on their teaching, holds potential to support teachers’ learning, but scarce research examines the pathways by which collaborative design can influence teachers’ instructional practices. Examining the teaching and reflective thinking of two science teachers who engaged in collaborative design activities over two years, we found that their enactment practices became more supportive of students’ rigorous learning over time, and that they perceived collaborative efforts with teacher educators and partner teachers to plan lessons and analyze videos of instruction as supportive of their learning to enact rigorous instruction. 
    more » « less
  8. This work follows a group of four science teachers in the second year of an intensive PD. Our analyses revealed two distinct variations in their instruction. These differences were accompanied by similar differences in their instructional vision. We argue that instructional vision can illuminate teachers’ thinking about their work, insights that may be useful in helping PD facilitators better hone such experiences. 
    more » « less
  9. A teacher’s noticing or their ability to see and interpret classroom events is an important component of their expertise. Examination of these noticings is a way to understand changes in their learning over time. In this research, we examine changes in teacher noticing of classroom instruction for two groups that participated in slightly different professional development experiences to understand how this PD shaped their personal domain of learning. Findings suggest that both programs shaped teacher noticing and learning but in different ways. 
    more » « less
  10. Science learning is thought to be best supported when students are positioned as epistemic agents. Using a case study approach, we explore the experiences of one Black middle school girl and her epistemic efforts and the ways in which her group members’ responses to her efforts either supported or constrained her epistemic agency during small group work in two argumentation lessons. Our findings show that Jessie’s epistemic efforts were not often taken up by her peers in ways that support her epistemic agency, findings that have implications for student learning and engagement in terms of the epistemic work we ask students to engage in, and the instructional strategies that support this work. 
    more » « less