skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Promoting Uncertainty in Science Classrooms through Cognitively Demanding Tasks
The reform vision brought forth by the Framework for K-12 Science Education emphasizes the integration of scientific knowledge with scientific practices as students try to figure out a phenomenon. During this process of making sense of phenomenon, students experience moments of uncertainty which is important because scientific activity is driven by this need to manage uncertainty. Using cognitively demanding tasks in science classrooms presents a means to integrate uncertainty into students’ experiences. Our analysis of video records of science lessons during the implementation of chemistry tasks at different cognitive demand levels revealed how types of uncertainty that students experienced differed in these lessons and the ways in which uncertainty was evoked during the implementation of cognitively demanding science tasks.  more » « less
Award ID(s):
1720587
PAR ID:
10251796
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual meeting program American Educational Research Association
ISSN:
0163-9676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The reform vision brought forth by the Framework for K-12 Science Education emphasizes the integration of scientific knowledge with scientific practices as students try to figure out a phenomenon. During this process of making sense of phenomenon, students experience moments of uncertainty which is important because scientific activity is driven by this need to manage uncertainty. Using cognitively demanding tasks in science classrooms presents a means to integrate uncertainty into students’ experiences. Our analysis of video records of science lessons during the implementation of chemistry tasks at different cognitive demand levels revealed how types of uncertainty that students experienced differed in these lessons and the ways in which uncertainty was evoked during the implementation of cognitively demanding science tasks. 
    more » « less
  2. null (Ed.)
    This study focuses on the kinds of uncertainty experienced by students in relation to the level and kind of students’ thinking during the implementation of a cognitively demanding science task. The Framework for K-12 Science Education together with the Next Generation Science Standards emphasize the integration of scientific knowledge with scientific practices as students try to figure out phenomena. During this process of sensemaking, students experience moments of uncertainty that are a key part of doing science and drive scientific pursuits. By examining video-records of a science lesson in which the teacher and the students worked on a cognitively demanding science task, and by analyzing students’ interviews about this lesson, we identify the types of uncertainty that students experienced during the implementation of this task across the trajectory of the lesson. Moving beyond an all or nothing approach to uncertainty, our analysis reveals different kinds of uncertainty that students can experience and presents cognitively demanding tasks as a means to integrate uncertainty into students’ experiences. 
    more » « less
  3. Reform-based rigorous instruction which fosters all students’ thinking and sensemaking is possible; however, it is not yet prevalent in science classrooms. This study explored promoting rigorous instruction by enhancing students’ intellectual work through cognitively demanding tasks. We examined instruction during the five lessons in a science classroom. We found variations in students’ intellectual work across the lessons. Our analysis revealed that the instructional practices associated with promoting students’ engagement in rigorous thinking were consequential for promoting students’ epistemic agency. Thus, we argue that maintaining and enhancing demand on students’ intellectual engagement in cognitively demanding tasks requires the work of providing opportunities for students to learn science-as-practice by acting as epistemic agents. These findings can inform professional efforts regarding rigorous instruction. 
    more » « less
  4. null (Ed.)
    Recent instructional reforms in science education emphasize rigorous instruction where students’ engage in high-level thinking and sensemaking as they try to explain phenomena or solve problems. This study aims to investigate how students’ intellectual engagement can be promoted through design and implementation of cognitively demanding science tasks. Specifically, we aim to unpack instructional practices that can help to enhance students’ engagement in high-level thinking and sensemaking as they work in science classrooms. In our analysis, we focused on the implementation of five lessons across three different science classrooms that two middle school science teachers collaboratively designed as a part of a professional development about promoting productive student talk in science classrooms. Our analysis revealed the changes in students’ intellectual engagement across the trajectory of these lessons and three instructional practices associated with enhancing opportunities for students’ thinking: (a) Holding students intellectually accountable to develop explanations of how and why a phenomenon occurs through collaborative work, (b) Leveraging students’ ideas to advance their thinking, (c) Initiating just-in-time resources and questions to problematize students’ intellectual engagement. The study findings provide implications for how to generate opportunities to enhance students’ thinking in the service of sensemaking. 
    more » « less
  5. null (Ed.)
    Recent instructional reforms in science education emphasize rigorous instruction where students’ engage in high-level thinking and sensemaking as they try to explain phenomena or solve problems. This study aims to investigate how students’ intellectual engagement can be promoted through design and implementation of cognitively demanding science tasks. Specifically, we aim to unpack instructional practices that can help to enhance students’ engagement in high-level thinking and sensemaking as they work in science classrooms. In our analysis, we focused on the implementation of five lessons across three different science classrooms that two middle school science teachers collaboratively designed as a part of a professional development about promoting productive student talk in science classrooms. Our analysis revealed the changes in students’ intellectual engagement across the trajectory of these lessons and three instructional practices associated with enhancing opportunities for students’ thinking: (a) Holding students intellectually accountable to develop explanations of how and why a phenomenon occurs through collaborative work, (b) Leveraging students’ ideas to advance their thinking, (c) Initiating just-in-time resources and questions to problematize students’ intellectual engagement. The study findings provide implications for how to generate opportunities to enhance students’ thinking in the service of sensemaking. 
    more » « less