skip to main content

Title: Two novel loci underlie natural differences in Caenorhabditis elegans abamectin responses
Parasitic nematodes cause a massive worldwide burden on human health along with a loss of livestock and agriculture productivity. Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is increasing, and little is known about the molecular and genetic causes of resistance for most of these drugs. The free-living roundworm Caenorhabditis elegans provides a tractable model to identify genes that underlie resistance. Unlike parasitic nematodes, C . elegans is easy to maintain in the laboratory, has a complete and well annotated genome, and has many genetic tools. Using a combination of wild isolates and a panel of recombinant inbred lines constructed from crosses of two genetically and phenotypically divergent strains, we identified three genomic regions on chromosome V that underlie natural differences in response to the macrocyclic lactone (ML) abamectin. One locus was identified previously and encodes an alpha subunit of a glutamate-gated chloride channel ( glc-1 ). Here, we validate and narrow two novel loci using near-isogenic lines. Additionally, we generate a list of prioritized candidate genes identified in C . elegans and in the parasite Haemonchus contortus by comparison of ML resistance loci. These genes could represent previously unidentified resistance genes shared across nematode species and more » should be evaluated in the future. Our work highlights the advantages of using C . elegans as a model to better understand ML resistance in parasitic nematodes. « less
Authors:
; ; ; ; ; ; ; ; ; ; ;
Editors:
Nutman, Thomas B.
Award ID(s):
1764421
Publication Date:
NSF-PAR ID:
10251903
Journal Name:
PLOS Pathogens
Volume:
17
Issue:
3
Page Range or eLocation-ID:
e1009297
ISSN:
1553-7374
Sponsoring Org:
National Science Foundation
More Like this
  1. Growth rate and body size are complex traits that contribute to the fitness of organisms. The identification of loci that underlie differences in these traits provides insights into the genetic contributions to development. Leveraging Caenorhabditis elegans as a tractable metazoan model for quantitative genetics, we can identify genomic regions that underlie differences in growth. We measured post-embryonic growth of the laboratory-adapted wild-type strain (N2) and a wild strain from Hawaii (CB4856), and found differences in body size. Using linkage mapping, we identified three distinct quantitative trait loci (QTL) on chromosomes IV, V, and X that are associated with variation in body size. We further examined these size-associated QTL using chromosome substitution strains and near-isogenic lines, and validated the chromosome X QTL. Additionally, we generated a list of candidate genes for the chromosome X QTL. These genes could potentially contribute to differences in animal growth and should be evaluated in subsequent studies. Our work reveals the genetic architecture underlying animal growth variation and highlights the genetic complexity of body size in C. elegans natural populations.
  2. Irazoqui, Javier E. (Ed.)
    Zinc is an essential trace element that acts as a co-factor for many enzymes and transcription factors required for cellular growth and development. Altering intracellular zinc levels can produce dramatic effects ranging from cell proliferation to cell death. To avoid such fates, cells have evolved mechanisms to handle both an excess and a deficiency of zinc. Zinc homeostasis is largely maintained via zinc transporters, permeable channels, and other zinc-binding proteins. Variation in these proteins might affect their ability to interact with zinc, leading to either increased sensitivity or resistance to natural zinc fluctuations in the environment. We can leverage the power of the roundworm nematode Caenorhabditis elegans as a tractable metazoan model for quantitative genetics to identify genes that could underlie variation in responses to zinc. We found that the laboratory-adapted strain (N2) is resistant and a natural isolate from Hawaii (CB4856) is sensitive to micromolar amounts of exogenous zinc supplementation. Using a panel of recombinant inbred lines, we identified two large-effect quantitative trait loci (QTL) on the left arm of chromosome III and the center of chromosome V that are associated with zinc responses. We validated and refined both QTL using near-isogenic lines (NILs) and identified a naturally occurringmore »deletion in sqst-5 , a sequestosome-related gene, that is associated with resistance to high exogenous zinc. We found that this deletion is relatively common across strains within the species and that variation in sqst-5 is associated with zinc resistance. Our results offer a possible mechanism for how organisms can respond to naturally high levels of zinc in the environment and how zinc homeostasis varies among individuals.« less
  3. Abstract

    Entomopathogenic nematodes (EPNs), including Heterorhabditis and Steinernema, are parasitic to insects and contain mutualistically symbiotic bacteria in their intestines (Photorhabdus and Xenorhabdus, respectively) and therefore offer opportunities to study both mutualistic and parasitic symbiosis. The establishment of genetic tools in EPNs has been impeded by limited genetic tractability, inconsistent growth in vitro, variable cryopreservation, and low mating efficiency. We obtained the recently described Steinernema hermaphroditum strain CS34 and optimized its in vitro growth, with a rapid generation time on a lawn of its native symbiotic bacteria Xenorhabdus griffiniae. We developed a simple and efficient cryopreservation method. Previously, S. hermaphroditum isolated from insect hosts was described as producing hermaphrodites in the first generation. We discovered that CS34, when grown in vitro, produced consecutive generations of autonomously reproducing hermaphrodites accompanied by rare males. We performed mutagenesis screens in S. hermaphroditum that produced mutant lines with visible and heritable phenotypes. Genetic analysis of the mutants demonstrated that this species reproduces by self-fertilization rather than parthenogenesis and that its sex is determined chromosomally. Genetic mapping has thus far identified markers on the X chromosome and three of four autosomes. We report that S. hermaphroditum CS34 is the first consistently hermaphroditic EPN and ismore »suitable for genetic model development to study naturally occurring mutualistic symbiosis and insect parasitism.

    « less
  4. Root-knot nematodes (RKN; Meloidogyne spp.) represent one of the most damaging groups of plant-parasitic nematodes. They secrete effector proteins through a protrusible stylet to manipulate host cells for their benefit. Stylet-secreted effector proteins are produced within specialized secretory esophageal gland cells, one dorsal (DG) and two subventral (SvG), whose activity differ throughout the nematode life cycle. Previous gland transcriptomic profiling studies identified dozens of candidate RKN effectors, but were focused on the juvenile stages of the nematode when the SvGs are most active. We developed a new approach to enrich for the active DGs of RKN M. incognita adult females for RNA and protein extraction. Female heads were manually cut from the body, and a combination of sonication/vortexing was used to dislodge contents inside the heads. DG-enriched fractions were collected by filtering using cell strainers. Comparative transcriptome profiling of pre-parasitic second-stage juveniles, female heads, and DG-enriched samples was conducted using RNA sequencing. Application of an established effector mining pipeline led to the identification of 83 candidate effector genes upregulated in DG-enriched samples of adult females that code for proteins with a predicted signal peptide, but lack transmembrane domains or homology to proteins in the free-living nematode Caenorhabditis elegans. In situmore »hybridization resulted in the identification of 14 new DG-specific candidate effectors expressed in adult females. Taken together, we have identified novel candidate Meloidogyne effector genes that may have essential roles during later stages of parasitism.« less
  5. Abstract Background

    Genome wide association (GWA) studies demonstrate linkages between genetic variants and traits of interest. Here, we tested associations between single nucleotide polymorphisms (SNPs) in rice (Oryza sativa) and two root hair traits, root hair length (RHL) and root hair density (RHD). Root hairs are outgrowths of single cells on the root epidermis that aid in nutrient and water acquisition and have also served as a model system to study cell differentiation and tip growth. Using lines from the Rice Diversity Panel-1, we explored the diversity of root hair length and density across four subpopulations of rice (aus,indica,temperate japonica, andtropical japonica). GWA analysis was completed using the high-density rice array (HDRA) and the rice reference panel (RICE-RP) SNP sets.

    Results

    We identified 18 genomic regions related to root hair traits, 14 of which related to RHD and four to RHL. No genomic regions were significantly associated with both traits. Two regions overlapped with previously identified quantitative trait loci (QTL) associated with root hair density in rice. We identified candidate genes in these regions and present those with previously published expression data relevant to root hair development. We re-phenotyped a subset of lines with extreme RHD phenotypes and found that the variationmore »in RHD was due to differences in cell differentiation, not cell size, indicating genes in an associated genomic region may influence root hair cell fate. The candidate genes that we identified showed little overlap with previously characterized genes in rice andArabidopsis.

    Conclusions

    Root hair length and density are quantitative traits with complex and independent genetic control in rice. The genomic regions described here could be used as the basis for QTL development and further analysis of the genetic control of root hair length and density. We present a list of candidate genes involved in root hair formation and growth in rice, many of which have not been previously identified as having a relation to root hair growth. Since little is known about root hair growth in grasses, these provide a guide for further research and crop improvement.

    « less