skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating Adoption and Collaboration with Digital Clinical Simulations by Teacher Educators.
In this study, we examine the outcome of a four-day workshop with 24 Teacher Educators (fellows) who were supported in using two tools - Teacher Moments (TM) and Eliciting Learner Knowledge (ELK). The tools are designed for authoring, implementing, and research Digital Clinical Simulations in education. The simulations centered around issues of equity in K-12 computer science education to provide in-/pre-service teachers with opportunities to practice high-stakes interactions in low-stakes settings. We operationalize the technology adoption of the fellows through the notions of self-efficacy, help-seeking, and technology concerns to recognize the potential barriers they faced in transitioning from authoring to implementing and research design. Finally, we note the fellows' implementation plans in the ensuing academic year and examine potential collaborations amongst them using social network analysis. Our results reveal how a small group of fellows, spanning major regions of the U.S., generate a broad range of scenarios, as well as clusters of scenarios, enabling simulation-based research supported by collaboration.  more » « less
Award ID(s):
1917668
PAR ID:
10252005
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Langran, E.; Archambault, L.
Date Published:
Journal Name:
Proceedings of the 2021 Society for Information Technology and Teacher Education (SITE) Conference
Page Range / eLocation ID:
1209-1217
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we explore how to support teacher educators to author their own digital clinical simulations to prepare K-12 pre-service computer science teachers. Teacher educators have the potential to create simulations about relevant content for their teacher preparation programs and contextualize those simulations for their students. To benefit from this unique perspective, we support teacher educators in authoring simulations. We consider the relationship between authoring simulations and digital storytelling to inform our authoring tools and supports. In this study, we report results on what kinds of supports are needed for authoring simulations based on a co-design workshop with 12 teacher educators from nine U.S. states across all regions of the country. We examine how these authors set context, select content, and engage in the simulation authoring process to gain insight into supporting teacher educators as digital storytellers 
    more » « less
  2. Abstract This experimental paper explores a form of neurodiversity‐affirming qualitative data analysis labelled a polyphony of (analytical) scores and creative methodologies utilised in our research project. Our data examples come from a federally funded research study which co‐designed sensory pedagogies for autistic students interested in computational thinking (CT). Four middle‐school teachers, or teacher fellows (TF), from diverse disciplines were recruited to develop neurodiverse CT mini curriculum and pedagogies for middle‐school students interested in STEM. Teacher fellows worked with the research team to co‐design teaching and learning materials and technology to explore computational thinking. The research team and teacher fellows attended workshops that included creative ensemble activities using digital‐physical musical technologies and CT concepts. Data from these workshops were used to create two polyphonic score compositions as ways to interact with data. A video creation addressed how TFs were impacted during the development and implementation of neurodiverse pedagogies. Quotes and keywords extracted for the video creation reflect how silence and sound collapse and expand in a rhizomatic fashion, indicating how TFs experience messiness, exploration, atypicality and more, which fully represent neurodiversity. The score analysis enabled us to diversify participants' experiences with neurodiverse pedagogies and illustrated the affective dimensions of musical composition as a form of data analysis. 
    more » « less
  3. Student success in educational ecosystems is a primary goal of leadership efforts. Yet, power and privilege affect the racial, classist, and gendered implications of STEM education work in K-12 education as well as higher education. Interventions have been done at various levels, but despite the hard work of implementation, this has not resulted in dramatic improvements to STEM educational ecosystems or student engagement within them. Often, these implementations are done at the faculty/student level or institutional level but not at the departmental leadership level. The NSF-supported Eco-STEM Project proposes to establish a healthy educational ecosystem that supports all individuals (students, faculty, and staff) to thrive. Project activities are guided by ecosystem paradigm measures that support a culturally responsive learning/working environment; make teaching and learning rewarding and fulfilling; and emphasize community assets to enhance motivation, excellence, and success. For this work-in-progress paper, we describe the development of a leadership community of practice, comprised of department chairs of science and engineering departments, at [university name redacted], a large state-funded comprehensive majority minority master’s granting institution in the Southwest United States. In the year-long Leadership Community of Practice (L-CoP), the Fellows work on unpacking issues of power and privilege in their roles as STEM leaders and educators. During the Fall semester of 2022, the Fellows participated in four sessions. They engaged in readings, videos, active-learning activities, and critically reflective dialogues to facilitate discussion and reflection on identity, agency, the culture of power in STEM, and interventions and change in higher education. The L-CoP starts with Fellows reflecting on their social and professional identities and how their identities influence their teaching and leadership philosophies. Then Fellows are introduced to the framework of the culture of power in science--where they explore the social, cultural, and political impacts of preparing for a STEM college education. Finally, they explore theories and models of change for STEM higher education spaces. Through this curriculum, we aim to examine mental models to deconstruct notions that uphold the culture of power in science by instead building counternarratives with faculty and students in their departments. Through dialogues within the L-CoP, leaders discuss classroom/program climate, structure, and vibrancy to better support healthy educational ecosystems, as well as their participation in these systems. We are currently in the middle of our first implementation of the L-CoP. The first cohort consists of six L-CoP Fellows with highly diverse positionalities; there is racial, ethnic, and gender diversity, and all Fellows are full professors in the tenure line and chairs of their respective departments. We present details of the L-CoP, including the formation of the Fellow cohort, training of the facilitators, structure of the sessions, and initial results of our mid-program survey. The survey results provide insights into potential improvements to our tools and program. We also share some of the Fellows’ and facilitators’ reflections demonstrating a shift toward an ecosystem mindset. We prefer to present this work as a poster at the 2023 ASEE Annual Conference. 
    more » « less
  4. The Idea Wall is a collaborative technology that aims to support collective knowledge construction and idea negotiation across multiple social configurations. Further, to support multiple entry points for student collaboration, the Idea Wall provides (and requires) multiple modalities for interaction through text, collaborative discourse, and spatial orientation of ideas. To support the teacher in implementing and orchestrating Idea Wall activities, we designed: 1) an authoring portal to enable teachers to quickly create Idea Wall instances; 2) a whole class view to support whole class discussions; and 3) a set of real-time agents that can alert the teacher when students may need teacher intervention or new groupings based on natural language processing of students’ co-constructed ideas within the Idea Wall. 
    more » « less
  5. Abstract The practice of teacher noticing students' mathematical thinking often includes three interrelated components: attending to students' strategies, interpreting students' understandings, and deciding how to respond on the basis of students' understanding. This practice gains complexity in technology‐mediated environments (i.e., using technology‐enhanced math tasks) because it requires attending to and interpreting students' engagement with technology. Current frameworks implicitly assume the practice includes noticing the ways students use tools (including technology tools) in their work, but do not explicitly highlight the role of the tool. While research has shown that using these frameworks supports preservice secondary mathematics teachers (PSTs) developing noticing practices, it has also shown that PSTs largely overlook students' technology engagement when they are working on technology‐enhanced tasks (Journal for Research in Mathematics Education, 2010; 41(2):169–202). In this article, we describe our adaptation of Jacobs et al.'s framework for teacher noticing student mathematical thinking to include a focus on making students' technology‐tool engagement explicit when noticing in technology‐mediated environments, the Noticing in Technology‐Mediated Environments (NITE) framework. We describe the theoretical foundations of the framework, provide a video case example, and then illustrate how the framework can be used by mathematics teacher educators to support PSTs' noticing when students are working in technology‐mediated environments. 
    more » « less