This work highlights a multifunctional nanoscale material which can effectively compartmentalize small molecules and biomolecules into a single, micellar structure with programmable degradation properties resulting in highly controllable release properties. The nanomaterial consists of a ZIF-8 metal organic framework (MOF) encapsulated within a DNA surfactant micelle assembly, referred to as a nucleic acid nanocapsule (NAN). NANs have been demonstrated to enter cells through endocytosis and result in intracellular cargo release upon enzyme-triggered degradation. By combining the favorable properties of MOFs (large storage capacity) with those of NANs (triggerable release), we show diverse molecular cargo can be integrated into a single, highly programmable nanomaterial with controllable release profiles. The hybrid MOF–NANs exhibit double-gated regulation capabilities as evidenced by kinetic studies of encapsulated enzymes that indicate individual layers of the particle influence the overall enzymatic rate of turnover. The degradation of MOF–NANs can be controlled under multiple combined stimuli ( i.e. varying pH, enzymes), enabling selective release profiles in solutions representative of more complex biological systems. Lastly, the enhanced control over the release of small molecules, proteins and plasmids, is evaluated through a combination of cell culture and in vitro fluorescence assays, indicating the potential of MOF–NANs for both therapeutic and diagnostic applications.
more »
« less
Tracking nucleic acid nanocapsule assembly, cellular uptake and disassembly using a novel fluorescently labeled surfactant
Intracellular trafficking and delivery of nucleic acids is an area of growing interest, particularly as it relates to therapeutic applications. Spectroscopic methods have been used to observe and quantitatively measure the delivery of oligonucleotides both in vitro and in vivo . Herein we demonstrate the use of a new fluorophore labeled surfactant presenting a solvatochromatic chromophore for tracking the assembly and degradation of a hybrid biomaterial we refer to as a nucleic acid nanocapsule (NAN). We show that the surfactant enables critical micelle concentration determination, monitoring of NAN disassembly in vitro , and the ability to track the cellular movement and activity of surfactant–oligonucleotide conjugates in cells when coupled with quantitative PCR analysis.
more »
« less
- Award ID(s):
- 1847869
- PAR ID:
- 10252251
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 10
- Issue:
- 69
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 42349 to 42353
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nucleic acid delivery with mRNA lipid nanoparticles are being developed for targeting a wide array of tissues and cell types. However, targeted delivery to the bone microenvironment remains a significant challenge in the field, due in part to low local blood flow and poor interactions between drug carriers and bone material. Here we report bone‐targeting ionizable lipids incorporating a piperazine backbone and bisphosphate moieties, which bind tightly with hydroxyapatite ([Ca5(PO4)3OH]), a key component of mineralized tissues. These lipids demonstrate biocompatibility and low toxicity in both vitro and in vivo studies. LNP formulated with these lipids facilitated efficient cellular transfection and improved binding to hydroxyapatite in vitro, and targeted delivery to the bone microenvironment in vivo following systemic administration. Overall, our findings demonstrate the critical role of the piperazine backbone in a novel ionizable lipid, which incorporates a bisphosphonate group to enable efficient bone‐targeted delivery, highlighting the potential of rational design of ionizable lipids for next‐generation bone‐targeting delivery systems.more » « less
-
Ionically complexed nanoparticles were prepared from an anionic polysaccharide drug, heparin, entrapped by a positively charged chitosan polysaccharide. In this study, the encapsulation of heparin was studied to optimize properties needed for its oral drug delivery. Chitosan, used in a variety of biomedical applications, was selected as a cationic polymer for heparin encapsulation. These particles were prepared with a slightly positive charge and an appropriate size for oral drug delivery. The release profiles of these ionically complexed nanoparticles were improved by using FDA approved stabilizers, such as pluronic non-ionic surfactant and polyvinyl alcohol. These results obtained in vitro suggest that these stabilized, ionically complexed nanoparticles may be well-suited for the oral drug delivery of heparin into the gastrointestinal tract.more » « less
-
Sodium naphthenates (NaNs), found in crude oils and oil sands process-affected water (OSPW), can act as surfactants and stabilize undesirable foams and emulsions. Despite the critical impact of soap-like NaNs on the formation, properties, and stability of petroleum and OSPW foams, there is a significant lack of studies that characterize foam film drainage, motivating this study. Here, we contrast the drainage of aqueous foam films formulated with NaN with foams containing sodium dodecyl sulfate (SDS), a well-studied surfactant system, in the relatively low concentration regime ( c /CMC < 12.5). The foam films exhibit drainage via stratification, displaying step-wise thinning and coexisting thick–thin regions manifested as distinct shades of gray in reflected light microscopy due to thickness-dependent interference intensity. Using IDIOM (interferometry digital imaging optical microscopy) protocols that we developed, we analyze pixel-wise intensity to obtain thickness maps with high spatiotemporal resolution (thickness <1 nm, lateral ∼500 nm, time ∼10 ms). The analysis of interference intensity variations over time reveals that the aqueous foam films of both SDS and NaN possess an evolving, dynamic, and rich nanoscopic topography. The nanoscopic thickness transitions for stratifying SDS foam films are attributed to the role played by damped supramolecular oscillatory structural disjoining pressure contributed by the confinement-induced layering of spherical micelles. In comparison with SDS, we find smaller concentration-dependent step size and terminal film thickness values for NaN, implying weaker intermicellar interactions and oscillatory structural disjoining pressure with shorter decay length and periodicity.more » « less
-
Abstract Neonatal respiratory distress syndrome is mainly treated with the intratracheal delivery of pulmonary surfactants. The success of the therapy depends on the uniformity of distribution and efficiency of delivery of the instilled surfactant solution to the respiratory zone of the lungs. Direct imaging of the surfactant distribution and quantifying the efficiency of delivery is not feasible in neonates. To address this major limitation, we designed an eight-generation computational model of neonate lung airway tree using morphometric and geometric data of human lungs and fabricated it using additive manufacturing. Using this model, we performed systematic studies of delivery of a clinical surfactant either at a single aliquot or at two aliquots under different orientations of the airway tree in the gravitational space to mimic rolling a neonate on their side during the procedure. Our study offers novel insights into effects of the orientation of the lung airways and presence of a pre-existing surfactant film on how the instilled surfactant solution distributes in airways.more » « less
An official website of the United States government

