Neonatal respiratory distress syndrome is a potentially life-threatening condition that is often treated with the delivery of exogenous surfactants through a process called surfactant replacement therapy. This therapy includes the administration of the liquid surfactant through an endotracheal tube and mechanical ventilation. Due to the difficulty of imaging neonate lungs during this therapy, the success of surfactant delivery is often determined by observational techniques and evaluation of blood oxygen levels. The limitation of imaging creates challenges in evaluating the distribution of surfactant in airways. To address this limitation, we designed a computational, eight-generation, asymmetric neonate lung model using morphometric data to mimic the geometric structure of the human airway tree and fabricated it using an additive manufacturing technique. We used our model to study two-aliquot delivery of a clinically rated liquid surfactant under two different orientations to evaluate its distribution in airways. Our study offers a complex lung airway tree design that mimics the native geometry of the human airway tree to enable studies of therapeutics transport in airways.
more »
« less
A Quantitative Study of Transport of Surfactant Boli in a Three-Dimensional Lung Model of Neonates
Abstract Neonatal respiratory distress syndrome is mainly treated with the intratracheal delivery of pulmonary surfactants. The success of the therapy depends on the uniformity of distribution and efficiency of delivery of the instilled surfactant solution to the respiratory zone of the lungs. Direct imaging of the surfactant distribution and quantifying the efficiency of delivery is not feasible in neonates. To address this major limitation, we designed an eight-generation computational model of neonate lung airway tree using morphometric and geometric data of human lungs and fabricated it using additive manufacturing. Using this model, we performed systematic studies of delivery of a clinical surfactant either at a single aliquot or at two aliquots under different orientations of the airway tree in the gravitational space to mimic rolling a neonate on their side during the procedure. Our study offers novel insights into effects of the orientation of the lung airways and presence of a pre-existing surfactant film on how the instilled surfactant solution distributes in airways.
more »
« less
- Award ID(s):
- 1904204
- PAR ID:
- 10356604
- Publisher / Repository:
- Transactions of the ASME
- Date Published:
- Journal Name:
- Journal of Biomechanical Engineering
- Volume:
- 145
- ISSN:
- 0148-0731
- Subject(s) / Keyword(s):
- neonatal respiratory distress syndrome lung airway model plug flow liquid plug splitting distribution index efficiency index deposition volume
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the influence of bifurcation geometry, asymmetry of daughter airways, surfactant distribution, and physicochemical properties on the uniformity of airway recruitment of asymmetric bifurcating airways. To do so, we developed microfluidic idealized in vitro models of bifurcating airways, through which we can independently evaluate the impact of carina location and daughter airway width and length. We explore the uniformity of recruitment and its relationship to the dynamic surface tension of the lining fluid and relate this behavior to the hydraulic (P Hyd ) and capillary (P Cap ) pressure drops. These studies demonstrate the extraordinary importance of P Cap in stabilizing reopening, even in highly asymmetric systems. The dynamic surface tension of pulmonary surfactant is integral to this stability because it modulates P Cap in a velocity-dependent manner. Furthermore, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, aiding in gas exchange, and reducing ventilator-induced lung injury. NEW & NOTEWORTHY The dynamic surface tension of pulmonary surfactant is integral to the uniformity of asymmetric bifurcation airway recruitments because it modulates capillary pressure drop in a velocity-dependent manner. Also, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, reducing ventilator-induced lung injury.more » « less
-
Two new biomechanical challenges faced cetacean lungs compared to their terrestrial ancestors. First, hydrostatic pressures encountered during deep dives are sufficient to cause nearly full lung collapse, risking substantial barotrauma during surfacing if air is trapped in the fragile smaller airways. Second, rapid ventilation in large cetaceans requires correspondingly high ventilatory flow rates. In order to investigate how airway geometry evolved in response to these challenges, we characterized airway geometry from 12 species of cetaceans that vary in common dive depth and ventilatory behavior and a domestic pig using computed tomography. After segmenting the major airways, we generated centerline networks models for the larger airways and computed geometric parameters for each tree including mean branching angle, percent volume fraction, and Strahler branching, diameter, and length ratios. When airway geometry was regressed against ventilatory and diving parameters with phylogenetic least squares, neither average branching angle, percent volume fraction, Strahler length ratio or Strahler branching ratio significantly varied with common ventilatory mode or common diving depth. Higher Strahler diameter ratios were associated with slower ventilation and deeper diving depth, suggesting that cetacean lungs have responded to biomechanical pressures primarily with changes in airway diameter. High Strahler diameter ratios lungs in deeper diving species may help to facilitate more complete collapse of the delicate terminal airways by providing for a greater incompressible volume for air storage at depth. On the other hand, lungs with low Strahler diameter ratios would be better for fast ventilation because the gradual decrease in diameter moving distally should keep peripheral flow resistance low, maximizing ventilatory flow rates.more » « less
-
In the healthy lung, bronchi are tethered open by the surrounding parenchyma; for a uniform distribution of these peribronchial structures, the solution is well known. An open question remains regarding the effect of a distributed set of collapsed alveoli, as can occur in disease. Here, we address this question by developing and analyzing microscale finite-element models of systems of heterogeneously inflated alveoli to determine the range and extent of parenchymal tethering effects on a neighboring collapsible airway. This analysis demonstrates that micromechanical stresses extend over a range of ∼5 airway radii, and this behavior is dictated primarily by the fraction, not distribution, of collapsed alveoli in that region. A mesoscale analysis of the microscale data identifies an effective shear modulus, G eff , that accurately characterizes the parenchymal support as a function of the average transpulmonary pressure of the surrounding alveoli. We demonstrate the use of this formulation by analyzing a simple model of a single collapsible airway surrounded by heterogeneously inflated alveoli (a “pig-in-a-blanket” model), which quantitatively demonstrates the increased parenchymal compliance and reduction in airway caliber that occurs with decreased parenchymal support from hypoinflated obstructed alveoli. This study provides a building block from which models of an entire lung can be developed in a computationally tenable manner that would simulate heterogeneous pulmonary mechanical interdependence. Such multiscale models could provide fundamental insight toward the development of protective ventilation strategies to reduce the incidence or severity of ventilator-induced lung injury. NEW & NOTEWORTHY A destabilized lung leads to airway and alveolar collapse that can result in catastrophic pulmonary failure. This study elucidates the micromechanical effects of alveolar collapse and determines its range of influence on neighboring collapsible airways. A mesoscale analysis reveals a master relationship that can that can be used in a computationally efficient manner to quantitatively model alveolar mechanical heterogeneity that exists in acute respiratory distress syndrome (ARDS), which predisposes the lung to volutrauma and/or atelectrauma. This analysis may lead to computationally tenable simulations of heterogeneous organ-level mechanical interactions that can illuminate novel protective ventilation strategies to reduce ventilator-induced lung injury.more » « less
-
Abstract It is challenging to locate small-airway obstructions induced by chronic obstructive pulmonary disease (COPD) directly from visualization using available medical imaging techniques. Accordingly, this study proposes an innovative and noninvasive diagnostic method to detect obstruction locations using computational fluid dynamics (CFD) and convolutional neural network (CNN). Specifically, expiratory airflow velocity contours were obtained from CFD simulations in a subject-specific 3D tracheobronchial tree. One case representing normal airways and 990 cases associated with different obstruction sites were investigated using CFD. The expiratory airflow velocity contours at a selected cross section in the trachea were labeled and stored as the database for training and testing two CNN models, i.e., ResNet50 and YOLOv4. Gradient-weighted class activation mapping (Grad-CAM) and the Pearson correlation coefficient were employed and calculated to classify small-airway obstruction locations and pulmonary airflow pattern shifts and highlight the highly correlated regions in the contours for locating the obstruction sites. Results indicate that the airflow velocity pattern shifts are difficult to directly visualize based on the comparisons of CFD velocity contours. CNN results show strong relevance exists between the locations of the obstruction and the expiratory airflow velocity contours. The two CNN-based models are both capable of classifying the left lung, right lung, and both lungs obstructions well using the CFD simulated airflow contour images with total accuracy higher than 95.07%. The two automatic classification algorithms are highly transformative to clinical practice for early diagnosis of obstruction locations in the lung using the expiratory airflow velocity distributions, which could be imaged using hyperpolarized magnetic resonance imaging.more » « less
An official website of the United States government

