skip to main content

Title: Transepithelial Anti-Neuroblastoma Response to Kale among Four Vegetable Juices Using In Vitro Model Co-Culture System
Juicing vegetables is thought to be an anticancer treatment. Support exists for a rank order of anticancer greens (kale > dandelion > lettuce > spinach) based on degrees of bioavailability of different phytochemicals, also offset by some noxious molecules (i.e., calcium-oxalate). We developed a new in vitro transepithelial anti-neuroblastoma model system. The juices were diluted as predicted once in the small intestine. They were applied to apical Caco-2Bbe1 cells atop dividing SH-SY5Y neuroblastoma cells, and changes in transepithelial electrical resistance (TEER) and cell growth were considered with juice spectroscopies. Studied first in monoculture, kale and dandelion were the most cytostatic juices on SH-SY5Ys, lettuce showed no effect, and high (4.2%) spinach was cytotoxic. In co-culture, high (4.2%) kale was quickest (three days) to inhibit neuroblastoma growth. By five days, dandelion and kale were equally robust. Lettuce showed small anti-proliferative effects at five days and spinach remained cytotoxic. Spinach’s cytotoxicity corresponded with major infrared bands indicative of oxalate. Kale juice uniquely induced reactive oxygen species and S-phase cell cycle arrest in SH-SY5Y. The superiority of kale and dandelion was also apparent on the epithelium, because raising TEER levels is considered healthy. Kale’s unique features corresponded with a major fluorescent peak that more » co-eluted with kaempferol during high performance liquid chromatography. Because the anticancer rank order was upheld, the model appears validated for screening anticancer juices. « less
Authors:
; ;
Award ID(s):
1800732
Publication Date:
NSF-PAR ID:
10252413
Journal Name:
Nutrients
Volume:
13
Issue:
2
ISSN:
2072-6643
Sponsoring Org:
National Science Foundation
More Like this
  1. Juicing vegetables is thought to be an anticancer treatment. Support exists for a rank order of anticancer greens (kale > dandelion > lettuce > spinach) based on degrees of bioavailability of different phytochemicals, also offset by some noxious molecules (i.e., calcium-oxalate). We developed a new in vitro transepithelial anti-neuroblastoma model system. The juices were diluted as predicted once in the small intestine. They were applied to apical Caco-2Bbe1 cells atop dividing SH-SY5Y neuroblastoma cells, and changes in transepithelial electrical resistance (TEER) and cell growth were considered with juice spectroscopies. Studied first in monoculture, kale and dandelion were the most cytostatic juices on SH-SY5Ys, lettuce showed no effect, and high (4.2%) spinach was cytotoxic. In co-culture, high (4.2%) kale was quickest (three days) to inhibit neuroblastoma growth. By five days, dandelion and kale were equally robust. Lettuce showed small anti-proliferative effects at five days and spinach remained cytotoxic. Spinach’s cytotoxicity corresponded with major infrared bands indicative of oxalate. Kale juice uniquely induced reactive oxygen species and S-phase cell cycle arrest in SH-SY5Y. The superiority of kale and dandelion was also apparent on the epithelium, because raising TEER levels is considered healthy. Kale’s unique features corresponded with a major fluorescent peak thatmore »co-eluted with kaempferol during high performance liquid chromatography. Because the anticancer rank order was upheld, the model appears validated for screening anticancer juices.« less
  2. Juicing vegetables is thought to be an anticancer treatment. Support exists for a rank order of anticancer greens (kale > dandelion > lettuce > spinach) based on degrees of bioavailability of different phytochemicals, also offset by some noxious molecules (i.e., calcium-oxalate). We developed a new in vitro transepithelial anti-neuroblastoma model system. The juices were diluted as predicted once in the small intestine. They were applied to apical Caco-2Bbe1 cells atop dividing SH-SY5Y neuroblastoma cells, and changes in transepithelial electrical resistance (TEER) and cell growth were considered with juice spectroscopies. Studied first in monoculture, kale and dandelion were the most cytostatic juices on SH-SY5Ys, lettuce showed no effect, and high (4.2%) spinach was cytotoxic. In co-culture, high (4.2%) kale was quickest (three days) to inhibit neuroblastoma growth. By five days, dandelion and kale were equally robust. Lettuce showed small anti-proliferative effects at five days and spinach remained cytotoxic. Spinach’s cytotoxicity corresponded with major infrared bands indicative of oxalate. Kale juice uniquely induced reactive oxygen species and S-phase cell cycle arrest in SH-SY5Y. The superiority of kale and dandelion was also apparent on the epithelium, because raising TEER levels is considered healthy. Kale’s unique features corresponded with a major fluorescent peak thatmore »co-eluted with kaempferol during high performance liquid chromatography. Because the anticancer rank order was upheld, the model appears validated for screening anticancer juices.« less
  3. Cancer has been one of the most significant and critical challenges in the field of medicine. It is a leading cause of death both in the United States and worldwide. Common cancer treatments such as radiation and chemotherapy can be effective in destroying cancerous tissue but cause many detrimental side effects. Thus, recent years have seen new treatment methods that do not harm healthy tissue, including immunotherapy. Adoptive cell therapy (ACT) is one form of immunotherapy in which patients’ immune cells are modified to target cancer cells and then reintroduced into the body. ACT is promising, but most current treatments are inefficient and costly. Widespread implementation of ACT has been a difficult task due to the high treatment cost and inefficient methods currently used to expand the cells. Additionally, if the manufacturing process is not carefully controlled, it can result in the cells losing their cancer-killing ability after expansion. To address the need for an economically feasible culture process to expand immune cells for immunotherapy, our laboratory has designed a centrifugal bioreactor (CBR) expansion system. The CBR uses a balance of centrifugal forces and fluid forces, as shown in Figure 1, to quickly expand infected CD8+ T-cells from a bovinemore »model up to high population densities. With other applications, the CBR has achieved cell densities as high as 1.8 x 108 cells/mL over 7 days in an 11.4-mL chamber. For this study, our goal is to begin validating the CBR by optimizing the growth of CEM (human lymphoblastic leukemia) cells, which are similar cell to cytotoxic T lymphocytes (CTLs). This can be accomplished by measuring kinetic growth parameters based on the concentrations of glucose and inhibitory metabolites in the culture. We hypothesize that by designing a kinetic model from static culture experiments, we can predict the parameters necessary to achieve peak CEM and eventually CTL growth in the CBR. We will report on kinetic growth studies in which different glucose concentrations are tested, and a maximum specific growth rate and Monod constant determined, as well as studies where varying levels of the inhibitory growth byproducts, lactate and ammonium, are added to the culture and critical inhibitor concentrations are determined. Another recent conceptual development for the design of the CBR is a real-time monitoring and feedback control system to regulate the cellular environment, based on levels of surface co-receptors and mRNA signaling within the culture. Prior studies have pinpointed T cell exhaustion as a significant issue in achieving successful immunotherapy, particularly in treatments for solid tumors; T cell exhaustion occurs during a period of chronic antigen stimulation when the cells lose their ability to target and kill cancer cells, currently theorized to be associated with particular inhibitory receptors and cytokines in the immune system. Designing a system with a fiber optic sensor that can monitor the cell state and use feedback control to regulate the pathways involved in producing these receptors will ensure the cells maintain cytotoxic properties during the expansion process within a Centrifugal Fluidized Expansion we call the CentriFLEX. In this presentation, we will also report on early results from development of this exhaustion monitoring system. In brief, achieving optimal kinetic models for the CBR system and methods to prevent T cell exhaustion has the potential to significantly enhance culture efficiency and availability of immunotherapy treatments.« less
  4. Modeling ciguatoxin (CTX) trophic transfer in marine food webs has significant implications for the management of ciguatera poisoning, a circumtropical disease caused by human consumption of CTX-contaminated seafood. Current models associated with CP risk rely on modeling abundance/presence of CTX-producing epi-benthic dinoflagellates, e.g., Gambierdiscus spp., and are based on studies showing that toxin production is site specific and occurs in pulses driven by environmental factors. However, food web models are not yet developed and require parameterizing the CTX exposure cascade in fish which has been traditionally approached through top-down assessment of CTX loads in wild-caught fish. The primary goal of this study was to provide critical knowledge on the kinetics of C-CTX-1 bioaccumulation and depuration in the marine omnivore Lagodon rhomboides. We performed a two-phase, 17 week CTX feeding trial in L. rhomboides where fish were given either a formulated C-CTX-1 (n = 40) or control feed (n = 37) for 20 days, and then switched to a non-toxic diet for up to 14 weeks. Fish were randomly sampled through time with whole muscle, liver, and other pooled viscera dissected for toxin analysis by a sodium channel-dependent MTT-based mouse neuroblastoma (N2a) assay. The CTX levels measured in all tissues increasedmore »with time during the exposure period (days 1 to 20), but a decrease in CTX-specific toxicity with depuration time only occurred in viscera extracts. By the end of the depuration, muscle, liver, and viscera samples had mean toxin concentrations of 189%, 128%, and 42%, respectively, compared to fish sampled at the start of the depuration phase. However, a one-compartment model analysis of combined tissues showed total concentration declined to 56%, resulting in an approximate half-life of 97 d (R2 = 0.43). Further, applying growth dilution correction models to the overall concentration found that growth was a major factor reducing C-CTX concentrations, and that the body burden was largely unchanged, causing pseudo-elimination and a half-life of 143–148 days (R2 = 0.36). These data have important implications for food web CTX models and management of ciguatera poisoning in endemic regions where the frequency of environmental algal toxin pulses may be greater than the growth-corrected half-life of C-CTX in intermediate-trophic-level fish with high site fidelity.« less
  5. Curcumin is a derivative of the turmeric spice, which is a yellow-pigmented root crop with a resilient sheath and bright orange flesh. It is originally known to be utilized in Asian dishes but, has been discovered to have antioxidant, anti-inflammatory, antiviral, antibacterial and anticancer characteristics. Different researchers have established great possibilities of curcumin's ability to prohibit the growth of cancer cells especially, because of its potentiality to differentiate between normal and cancerous cells. Research questions include understanding the effects of curcumin on the MCF-7 breast cancer cells with regards to the biomolecules of the cells. The results indicated that after attachment of cells for 48 hours, the concentration of curcumin at 15 µM showed more than 90% inhibition of cells within 24 hours. The analysis was carried out on the viability of the cells, western blotting and reverse transcriptase-polymerase chain reaction. Western blot analysis of signaling proteins from curcumin-treated cells showed that the expression level of phosphorylated protein p44/42 in the MAP kinase pathway was significantly decreased and the apoptotic marker cleaved caspase 3 was increased as compared to the curcumin-untreated control cells. Moreover, RT-PCR analysis of the reference genes in the apoptotic pathway (p53, caspase 9, BCL-2 and Bax)more »demonstrated the upregulation of p53, Bax and caspase 9 genes. The results assembled from this present study suggested that curcumin inhibited the growth and induced caspase-mediated apoptosis of MCF-7 cells via the MAPK signaling pathway. Therefore, breast cancer treatment with curcumin seems to be a promising remedial path in near future.« less