skip to main content


Title: Dietary plasticity of North American herbivores: a synthesis of stable isotope data over the past 7 million years.
Palaeoecological interpretations are based on our understanding of dietary and habitat preferences of fossil taxa. While morphology provides approximations of diets, stable isotope proxies provide insights into the realized diets of animals. We present a synthesis of the isotopic ecologies (δ13C from tooth enamel) of North American mammalian herbivores since approximately 7 Ma. We ask: (i) do morphological interpretations of dietary behaviour agree with stable isotope proxy data? (ii) are grazing taxa specialists, or is grazing a means to broaden the dietary niche? and (iii) how is dietary niche breadth attained in taxa at the local level? We demonstrate that while brachydont taxa are specialized as browsers, hypsodont taxa often have broader diets that included more browse consumption than previously anticipated. It has long been accepted that morphology imposes limits on the diet; this synthesis supports prior work that herbivores with ‘grazing’ adaptions, such as hypsodont teeth, have the ability to consume grass but are also able to eat other foods. Notably, localized dietary breadth of even generalist taxa can be narrow (approx. 30 to 60% of a taxon's overall breadth). This synthesis demonstrates that ‘grazing-adapted’ taxa are varied in their diets across space and time, and this flexibility may reduce competition among ancient herbivores.  more » « less
Award ID(s):
1948659
NSF-PAR ID:
10252415
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings
Volume:
288
Issue:
1948
ISSN:
1471-2954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Megafauna assemblages have declined or disappeared throughout much of the world, and many efforts are underway to restore them. Understanding the trophic ecology of such reassembling systems is necessary for predicting recovery dynamics, guiding management, and testing general theory. Yet, there are few studies of recovering large‐mammal communities, and fewer still that have characterized food‐web structure with high taxonomic resolution.

    In Gorongosa National Park, large herbivores have rebounded from near‐extirpation following the Mozambican Civil War (1977–1992). However, contemporary community structure differs radically from the prewar baseline: medium‐sized ungulates now outnumber larger bodied species, and several apex carnivores remain locally extinct.

    We used DNA metabarcoding to quantify diet composition of Gorongosa’s 14 most abundant large‐mammal populations. We tested five hypotheses: (i) the most abundant populations exhibit greatest individual‐level dietary variability; (ii) these populations also have the greatest total niche width (dietary diversity); (iii) interspecific niche overlap is high, with the diets of less‐abundant species nested within those of more‐abundant species; (iv) partitioning of forage species is stronger in more structurally heterogeneous habitats; and (v) selectivity for plant taxa converges within guilds and digestive types, but diverges across them.

    Abundant (and narrow‐mouthed) populations exhibited higher among‐individual dietary variation, but not necessarily the greatest dietary diversity. Interspecific dietary overlap was high, especially among grazers and in structurally homogenous habitat, whereas niche separation was more pronounced among browsers and in heterogeneous habitat. Patterns of selectivity were similar for ruminants—grazers and browsers alike—but differed between ruminants and non‐ruminants.

    Synthesis. The structure of this recovering food web was consistent with several hypotheses predicated on competition, habitat complexity, and herbivore traits, but it differed from patterns observed in more intact assemblages. We propose that intraspecific competition in the fastest‐recovering populations has promoted individual variation and a more nested food web, wherein rare species use subsets of foods eaten by abundant species, and that this scenario is reinforced by weak predation pressure. Future work should test these conjectures and analyse how the taxonomic dietary niche axis studied here interacts with other mechanisms of diet partitioning to affect community reassembly following wildlife declines.

     
    more » « less
  2. Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families—grasses and legumes—accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas. 
    more » « less
  3. Abstract

    Population dynamics of specialist carnivores are closely linked to prey availability, but the extent of variability in diet breadth of individual carnivores relative to natural variability in the abundance of their primary prey is not well understood. Canada lynx (Lynx canadensis) specialize on snowshoe hares (Lepus americanus) and exhibit cyclic fluctuations in abundance that lag 1–2 years behind those of snowshoe hares. Declining hare densities spur demographic changes in lynx, but it is unclear whether a corresponding increase in diet breadth occurs: (1) broadly across a lynx population; (2) only among individuals who are able to effectively switch to alternative prey; or (3) only among individuals who cannot capture sufficient primary prey. We measured stable isotope ratios of lynx muscle tissue spanning a cyclic increase and decline in hare density (1998–2001) in Fort Providence,NT, Canada. We found that lynx cohorts responded differently to hare population change, with yearling animals having broader diets at low hare densities, while adults and dependent juveniles maintained a constant diet through the initial decline in hare density. This result was consistent irrespective of lynx sex and indicates that yearling lynx likely are forced to adopt a broader diet when primary prey densities decline. Our results imply that select cohorts of specialist carnivores can exhibit high dietary plasticity in response to changes in primary prey abundance, prompting the need to determine whether increased diet breadth in young lynx is a successful strategy for surviving through periods of snowshoe hare scarcity. In this way, cohort‐specific niche expansion could strongly affect the dynamics of organisms exhibiting population cycles.

     
    more » « less
  4. New approaches to the study of early hominin diets have refreshed interest in how and when our diets diverged from those of other African apes. A trend toward significant consumption of C4foods in hominins after this divergence has emerged as a landmark event in human evolution, with direct evidence provided by stable carbon isotope studies. In this study, we report on detailed carbon isotopic evidence from the hominin fossil record of the Shungura and Usno Formations, Lower Omo Valley, Ethiopia, which elucidates the patterns of C4dietary utilization in the robust homininParanthropus. The results show that the most important shift toward C4foods occurred at ∼2.37 Ma, within the temporal range of the earliest known member of the genus,Paranthropus aethiopicus, and that this shift was not unique toParanthropusbut occurred in all hominins from this fossil sequence. This uptake of C4foods by hominins occurred during a period marked by an overall trend toward increased C4grazing by cooccurring mammalian taxa from the same sequence. However, the timing and geographic patterns of hominin diets in this region differ from those observed elsewhere in the same basin, where environmental controls on the underlying availability of various food sources were likely quite different. These results highlight the complexities of dietary responses by hominins to changes in the availability of food resources.

     
    more » « less
  5. Abstract

    Anthropogenic stressors have strong impacts on ecosystems. To understand their influence, detailed knowledge about trophic relationships among species is critical. However, this requires both exceptional resolution in dietary assessments and sampling breadth within communities, especially for highly diverse, tropical ecosystems.

    We used gut content metabarcoding across a broad range of coral reef fishes (8 families, 22 species) in Mo'orea, French Polynesia, to test whether this technique has the potential to capture the structure of a hyperdiverse marine food web. Moreover, we explored whether taxonomic groups (families) and traditional, broad‐scale trophic assignments explained fish diet across four different metrics of quantifying predator–prey interactions.

    Metabarcoding yielded a large number (4,341) of unique operational taxonomic units (i.e. prey) with high‐resolution taxonomic assignments (i.e. often to the level of genus or species). We demonstrate that across multiple metrics, taxonomic group at the family level is a consistently better, albeit still weak, predictor of empirical trophic relationships than frequently used, broad‐scale functional assignments. Our method also reveals a complex trophic network with fine‐scale partitioning among species, further emphasizing the importance of examining fish diets beyond broad trophic categories.

    We demonstrate the capacity of metabarcoding to reconstruct diverse and complex food webs with exceptional resolution, a significant advancement from traditional food web reconstruction. Furthermore, this method allows us to pinpoint the trophic niche of species with niche‐based modelling, even across hyperdiverse species assemblages such as coral reefs. In conjunction with complementary techniques such as stable isotope analysis, applying metabarcoding to whole communities will provide unparalleled information about energy and nutrient fluxes and inform their susceptibility to disturbances even in the world's most diverse ecosystems.

     
    more » « less