Megafauna assemblages have declined or disappeared throughout much of the world, and many efforts are underway to restore them. Understanding the trophic ecology of such reassembling systems is necessary for predicting recovery dynamics, guiding management, and testing general theory. Yet, there are few studies of recovering large‐mammal communities, and fewer still that have characterized food‐web structure with high taxonomic resolution. In Gorongosa National Park, large herbivores have rebounded from near‐extirpation following the Mozambican Civil War (1977–1992). However, contemporary community structure differs radically from the prewar baseline: medium‐sized ungulates now outnumber larger bodied species, and several apex carnivores remain locally extinct. We used DNA metabarcoding to quantify diet composition of Gorongosa’s 14 most abundant large‐mammal populations. We tested five hypotheses: (i) the most abundant populations exhibit greatest individual‐level dietary variability; (ii) these populations also have the greatest total niche width (dietary diversity); (iii) interspecific niche overlap is high, with the diets of less‐abundant species nested within those of more‐abundant species; (iv) partitioning of forage species is stronger in more structurally heterogeneous habitats; and (v) selectivity for plant taxa converges within guilds and digestive types, but diverges across them. Abundant (and narrow‐mouthed) populations exhibited higher among‐individual dietary variation, but not necessarily the greatest dietary diversity. Interspecific dietary overlap was high, especially among grazers and in structurally homogenous habitat, whereas niche separation was more pronounced among browsers and in heterogeneous habitat. Patterns of selectivity were similar for ruminants—grazers and browsers alike—but differed between ruminants and non‐ruminants.
- NSF-PAR ID:
- 10362738
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 35
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Synthesis . The structure of this recovering food web was consistent with several hypotheses predicated on competition, habitat complexity, and herbivore traits, but it differed from patterns observed in more intact assemblages. We propose that intraspecific competition in the fastest‐recovering populations has promoted individual variation and a more nested food web, wherein rare species use subsets of foods eaten by abundant species, and that this scenario is reinforced by weak predation pressure. Future work should test these conjectures and analyse how the taxonomic dietary niche axis studied here interacts with other mechanisms of diet partitioning to affect community reassembly following wildlife declines. -
Austin, A (Ed.)Sympatric large mammalian herbivore species differ in diet composition, both by eating different parts of the same plant and by eating different plant species. Various theories proposed to explain these differences are not mutually exclusive, but are difficult to reconcile and confront with data. Moreover, whereas several of these ideas were originally developed with reference to within-plant partitioning (i.e., consumption of different tissues), they may analogously apply to partitioning of plant species; this possibility has received little attention. Plant functional traits provide a novel window into herbivore diets and a means of testing multiple hypotheses in a unified framework. We used DNA metabarcoding to characterize the diets of 14 sympatric large-herbivore species in an African savanna and analyzed diet composition in light of 27 functional traits that we measured locally for 204 plant species. Plant traits associated with the deep phylogenetic split between grasses and eudicots formed the primary axis of resource partitioning, affirming the generality and importance of the grazer-browser spectrum. A secondary axis comprised plant traits relevant to herbivore body size. Plant taxa in the diets of large-bodied species were lower on average in digestible energy and protein, taller on average (especially among grazers), and tended to be higher in tensile strength, zinc, stem-specific density, and potassium (and lower in sodium, stem dry matter content, and copper). These results are consistent with longstanding hypotheses linking body size with forage quality and height, yet they also suggest the existence of undiscovered links between herbivore body size and a set of rarely considered food-plant traits. We also tested the novel hypothesis that the leaf economic spectrum (LES), a major focus in plant ecology, is an axis of resource partitioning in large-herbivore assemblages; we found that the LES was a minor axis of individual variation within a few species, but had little effect on interspecific dietary differentiation. Synthesis. These results identify key plant traits that underpin the partitioning of food-plant species in large-herbivore communities and suggest that accounting for multiple plant traits (and tradeoffs among them) will enable a deeper understanding of herbivore-plant interaction networks.more » « less
-
Abstract Behavioral niche partitioning is an important and widely assumed mechanism for the coexistence of ecologically similar species. Here we assessed this mechanism by testing its core assumption, that evolved differences in foraging behavior correspond with differences in resources consumed. We combined data on foraging behavior, available prey, and observed diets of five coexisting species of New World wood warblers (Parulidae), a system that has been foundational to our understanding of behavioral niche partitioning. Consistent with past work, we found that the five species differed markedly in their foraging behavior, enough that some species pairs hardly overlapped at all in foraging microhabitat. In contrast, the birds overlapped highly in diet, while exhibiting small, interpretable differences in resource use. The high overlap resulted mostly from all five species consuming numerous ants, a prey source that moves between microhabitats. To test the prediction that the large differences in foraging behavior explain the small dietary differences, we generated expected diets based on available prey and foraging microhabitat use. Consistent with niche partitioning as a coexistence mechanism, we found that the small dietary differences were explained by a combination of foraging microhabitat and available prey, but this pattern was driven by only a small number of prey taxa. Thus, we found mixed support for behavioral niche partitioning. Our results indicate that foraging behavior among these bird species helps explain subtle variation in diet, potentially facilitating coexistence. However, our results also revealed a weak relationship between foraging behavior and resource partitioning. Consequently, studies that rely solely on foraging behavior may greatly overestimate the degree of niche differentiation leading to erroneous conclusions. Overall, this study calls into question how and why these differences in foraging behavior evolved, and what role if any they play in facilitating coexistence.
-
null (Ed.)Palaeoecological interpretations are based on our understanding of dietary and habitat preferences of fossil taxa. While morphology provides approximations of diets, stable isotope proxies provide insights into the realized diets of animals. We present a synthesis of the isotopic ecologies (δ13C from tooth enamel) of North American mammalian herbivores since approximately 7 Ma. We ask: (i) do morphological interpretations of dietary behaviour agree with stable isotope proxy data? (ii) are grazing taxa specialists, or is grazing a means to broaden the dietary niche? and (iii) how is dietary niche breadth attained in taxa at the local level? We demonstrate that while brachydont taxa are specialized as browsers, hypsodont taxa often have broader diets that included more browse consumption than previously anticipated. It has long been accepted that morphology imposes limits on the diet; this synthesis supports prior work that herbivores with ‘grazing’ adaptions, such as hypsodont teeth, have the ability to consume grass but are also able to eat other foods. Notably, localized dietary breadth of even generalist taxa can be narrow (approx. 30 to 60% of a taxon's overall breadth). This synthesis demonstrates that ‘grazing-adapted’ taxa are varied in their diets across space and time, and this flexibility may reduce competition among ancient herbivores.more » « less
-
African savannas are the last stronghold of diverse large-mammal communities, and a major focus of savanna ecology is to understand how these animals affect the relative abundance of trees and grasses. However, savannas support diverse plant life-forms, and human-induced changes in large-herbivore assemblages—declining wildlife populations and their displacement by livestock—may cause unexpected shifts in plant community composition. We investigated how herbivory affects the prevalence of lianas (woody vines) and their impact on trees in an East African savanna. Although scarce (<2% of tree canopy area) and defended by toxic latex, the dominant liana,
Cynanchum viminale (Apocynaceae), was eaten by 15 wild large-herbivore species and was consumed in bulk by native browsers during experimental cafeteria trials. In contrast, domesticated ungulates rarely ate lianas. When we experimentally excluded all large herbivores for periods of 8 to 17 y (simulating extirpation), liana abundance increased dramatically, with up to 75% of trees infested. Piecewise exclusion of different-sized herbivores revealed functional complementarity among size classes in suppressing lianas. Liana infestation reduced tree growth and reproduction, but herbivores quickly cleared lianas from trees after the removal of 18-y-old exclosure fences (simulating rewilding). A simple model of liana contagion showed that, without herbivores, the long-term equilibrium could be either endemic (liana–tree coexistence) or an all-liana alternative stable state. We conclude that ongoing declines of wild large-herbivore populations will disrupt the structure and functioning of many African savannas in ways that have received little attention and that may not be mitigated by replacing wildlife with livestock.