In this research, we employ atomistic simulations to scrutinize the impact of hydrogen (H) on dislocation mobility in iron (Fe). Our study uncovers two critical aspects: Firstly, hydrogen atoms serve to stabilize the edge dislocation core, thereby elevating the shear stress threshold needed for dislocation mobilization. Secondly, hydrogen's influence on dislocation mobility is velocity-dependent; it enhances mobility at low velocities by diminishing lattice resistance but hampers it at high velocities due to increased viscous drag. These nuanced findings illuminate the multifaceted relationship between hydrogen atoms and dislocation mechanisms. They offer valuable insights for the development of materials with enhanced mechanical properties and contribute to strategies for mitigating hydrogen-induced material degradation. 
                        more » 
                        « less   
                    
                            
                            Lattice dislocation induced misfit dislocation evolution in semi-coherent {111} bimetal interfaces
                        
                    More Like this
- 
            
- 
            We investigate intermittent plasticity in nanopillars of nanocrystalline molybdenum based on in situ transmission electron microscopy observations. By correlating electron imaging results with the measured nanopillar mechanical response, we demonstrate that the intermittent plasticity in nanocrystalline molybdenum is largely caused by dislocation avalanches. Electron imaging further reveals three types of dislocation avalanches, from intragranular to transgranular to cross-granular avalanches. The measured strain bursts resulted from avalanches have similar magnitudes to those reported for the molybdenum single-crystal pillars, while the corresponding flow stress in nanocrystalline molybdenum is greatly enhanced by the small grain size. Statistical analysis also shows that the avalanches behavior has similar characteristic as single crystals in the mean field theory model. Together, our findings here provide critical insights into the deformation mechanisms in a nanostructured body-centered-cubic metal.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    