Abstract Understanding the stress state before and after an earthquake is essential to study how stress on faults evolves during the seismic cycle. This study integrates wellbore failure analysis, laboratory experiments, and edge dislocation model to study the stress state before and after the Chi‐Chi earthquake. The post‐earthquake in‐situ stress state observed along boreholes of the Taiwan Chelungpu‐fault Drilling Project (TCDP) is heterogeneous due to lithological variations. Along the borehole, we observe that drilling‐induced tensile fractures are only present in sandstones, whereas breakouts are mostly present in silt‐rich rocks. Laboratory experiments on TCDP cores also show that tensile and compressive strength are weaker in sandstones than in silt‐rich rocks. These observations imply that both maximum and minimum horizontal principal stresses are higher in silt‐rich intervals. Extended leak‐off tests in the TCDP borehole also show lower minimum horizontal stress in sand‐rich intervals, consistent with the above observations. We combine these observations to estimate a profile of stress magnitudes along the well which explains the variability of stress states found in previous studies. The stress heterogeneity we observed underlines the importance of acknowledging the spatial scale that the stress data represent. We then use an edge dislocation model constrained by GPS surface displacements obtained during Chi‐Chi earthquake to calculate the coseismic stress changes. Our inferred pre‐earthquake stress magnitudes, obtained by subtracting the coseismic stress change from the post‐earthquake stress, suggest subcritical stress state before the earthquake despite the large displacements observed during the Chi‐Chi earthquake in the region where TCDP encountered the fault.
more »
« less
Thermally-induced breakouts: insights from true-triaxial tests with acoustic emission monitoring
Borehole breakouts are used to constrain the magnitude of maximum horizontal stress. However, when the borehole wall strength is higher than the in situ tangential stress, borehole wall failure does not develop. Additional compressive stress can be induced by heating borehole walls. To validate this concept experimentally, we conducted room-temperature and elevated temperature true-triaxial tests on Berea sandstone and Niagaran dolomite samples. We used acoustic emission sensors to capture the onset of breakout development, and we measured the temperature close to borehole wall to assess the magnitude of induced thermal hoop stress. The test results show that within a specific rock type, the breakouts develop in similar manner in room-temperature and elevated-temperature tests. Therefore, the maximum horizontal stress can be constrained from the following dataset: critical tangential stress at which breakout develops, minimum horizontal stress, elastic and thermal properties, and temperature change at the borehole wall.
more »
« less
- Award ID(s):
- 1829597
- PAR ID:
- 10252457
- Date Published:
- Journal Name:
- 54th US Rock Mechanics/Geomechanics Symposium
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Key engineering properties of unsaturated soils such as volume change and shear strength can be defined using the effective stress principle. Several problems like prolonged drought, high-level radioactive waste, buried high voltage cables can subject surface and near-surface unsaturated soils to elevated temperatures. Such elevated temperatures can affect the hydraulic and mechanical behavior of unsaturated soils. It is very important to develop a closed-form model that can reasonably estimate the effective stresses under different elevated temperatures. For this purpose, the current study incorporates the temperature effect into a suction stress-based representation of Bishop’s effective stress. The proposed model accounts for the effect of temperature on matric suction and degree of saturation. A temperature-dependent soil water retention curve is used to account for thermal effects on surface tension, contact angle, and enthalpy of immersion per unit area. The proposed effective stress model is then used to calculate the effective stress for two soils, Pachapa loam, and Seochang sandy clay, at various temperatures ranging from 25°C to 100°C. The validity of the model is examined by comparing the predicted effective degree of saturation and suction stress values against the experimental data reported in the literature for GMZ01 bentonite. At a constant net normal stress, the results for both soils show that the impact of temperature on effective stress can be significant. The proposed model can be used for studying geotechnical and geoenvironmental engineering applications that involve elevated temperatures.more » « less
-
Combining a retrogression heat treatment with simulta- neous warm forming can increase the formability of peak-aged, high-strength aluminum alloys while allowing peak-aged strength to be recovered through a single reaging heat treatment after forming. This process is termed retrogression-forming-and-reaging (RFRA). This study investigates the applicability of RFRA to AA6013- T6 sheet material. Elevated-temperature tensile tests were performed at temperatures from 230 to 250 °C and strain rates from 3.2 10 −3 to 10 −1 s −1 . Tensile tests were followed by reaging with a simulated paint-bake heat treatment. Flow stress at a true strain of 0.10 ranges from 230 MPa (250 °C and 3.2 10 −3 s −1 ) to 290 MPa (230 °C and 10 −1 s −1 ), significantly lower than the room-temperature yield strength of 360 MPa in the T6 condition. The average elongation to rupture and reduc- tion in area from elevated-temperature tests are 22% and 56%, respectively, which are similar to the room- temperature values for the T4 condition. Elevated- temperature testing reduced material hardness compared to the original T6 condition. Subsequent reaging with a simulated paint-bake raised hardness to 96% of the T6 condition in un-deformed material, but slightly decreased the hardness of the deformed material. Recommendations for implementing RFRA of AA6013-T6 are presented.more » « less
-
Liquid crystal elastomers (LCEs) are composed of rod-like liquid crystal (LC) molecules (mesogens) linked into elastomeric polymer networks. They present a nematic phase with directionally ordered mesogens at room temperature and an isotropic phase with no order at high temperatures, enabling large thermal-induced deformation. As a result, LCEs have become promising candidates for new applications in soft robotics and shape morphing. LCEs are being actively studied in both experiment and theory in recent years. However, the fundamental relationship among synthesis, processing, and thermomechanical behaviors of modern LCEs are still largely unclear. This knowledge gap is further complicated by the various LCE types, including polydomain, monodomain, nematic-genesis, and isotropic-genesis, each fabricated and used under different experimental conditions and applications. Here we explore synthesis-processing-property relationships in thermomechanics of various LCEs, by combining fabrication, characterization, and theoretical modeling. We adapt the widely used two-stage method to fabricate isotropic-genesis polydomain LCEs and nematic-genesis LCEs with varying pre-stretches during polymerization. We characterize the thermal-induced spontaneous deformation and the temperature-dependent uniaxial stress-stretch responses of the LCEs. We identify a new relationship among the soft elasticity, the thermal-induced spontaneous deformation, and the pre-stretch during polymerization, in the LCEs under study. Building on classical theories and our experimental results, we develop a constitutive model to describe the uniaxial behaviors of various LCEs. The theoretical predictions agree well with the experimental results on uniaxial stress-stretch responses at different temperatures. Finally, we discuss the remaining challenges and future opportunities in synthesis-processing-property relationships of LCEs.more » « less
-
Abstract Acting like thermal resistances, ferroelectric domain walls can be manipulated to realize dynamic modulation of thermal conductivity (k), which is essential for developing novel phononic circuits. Despite the interest, little attention has been paid to achieving room‐temperature thermal modulation in bulk materials due to challenges in obtaining a high thermal conductivity switching ratio (khigh/klow), particularly in commercially viable materials. Here, room‐temperature thermal modulation in 2.5 mm‐thick Pb(Mg1/3Nb2/3)O3–xPbTiO3(PMN–xPT) single crystals is demonstrated. With the use of advanced poling conditions, assisted by the systematic study on composition and orientation dependence of PMN–xPT, a range of thermal conductivity switching ratios with a maximum of ≈1.27 is observed. Simultaneous measurements of piezoelectric coefficient (d33) to characterize the poling state, domain wall density using polarized light microscopy (PLM), and birefringence change using quantitative PLM reveal that compared to the unpoled state, the domain wall density at intermediate poling states (0<d33<d33,max) is lower due to the enlargement in domain size. At optimized poling conditions (d33,max), the domain sizes show increased inhomogeneity that leads to enhancement in the domain wall density. This work highlights the potential of commercially available PMN–xPT single crystals among other relaxor‐ferroelectrics for achieving temperature control in solid‐state devices.more » « less
An official website of the United States government

