Liquid crystal elastomers (LCEs) are made of liquid crystal molecules integrated with rubber-like polymer networks. An LCE exhibits both the thermotropic property of liquid crystals and the large deformation of elastomers. It can be monodomain or polydomain in the nematic phase and transforms to an isotropic phase at elevated temperature. These features have enabled various new applications of LCEs in robotics and other fields. However, despite substantial research and development in recent years, thermomechanical coupling in polydomain LCEs remains poorly studied, such as their temperature-dependent mechanical response and stretch-influenced isotropic-nematic phase transition. This knowledge gap severely limits the fundamental understanding of the structure-property relationship, as well as future developments of LCEs with precisely controlled material behaviors. Here, we construct a theoretical model to investigate the thermomechanical coupling in polydomain LCEs. The model includes a quasi-convex elastic energy of the polymer network and a free energy of mesogens. We study the working conditions where a polydomain LCE is subjected to various prescribed planar stretches and temperatures. The quasi-convex elastic energy enables a “mechanical phase diagram” that describes the macroscopic effective mechanical response of the material, and the free energy of mesogens governs their first-order nematic-isotropic phase transition. The evolution of the mechanical phase diagram and the order parameter with temperature is predicted and discussed. Unique temperature-dependent mechanical behaviors of the polydomain LCE that have never been reported before are shown in their stress-stretch curves. These results are hoped to motivate future fundamental studies and new applications of thermomechanical LCEs.
more »
« less
This content will become publicly available on March 1, 2026
Synthesis-processing-property relationships in thermomechanics of liquid crystal elastomers
Liquid crystal elastomers (LCEs) are composed of rod-like liquid crystal (LC) molecules (mesogens) linked into elastomeric polymer networks. They present a nematic phase with directionally ordered mesogens at room temperature and an isotropic phase with no order at high temperatures, enabling large thermal-induced deformation. As a result, LCEs have become promising candidates for new applications in soft robotics and shape morphing. LCEs are being actively studied in both experiment and theory in recent years. However, the fundamental relationship among synthesis, processing, and thermomechanical behaviors of modern LCEs are still largely unclear. This knowledge gap is further complicated by the various LCE types, including polydomain, monodomain, nematic-genesis, and isotropic-genesis, each fabricated and used under different experimental conditions and applications. Here we explore synthesis-processing-property relationships in thermomechanics of various LCEs, by combining fabrication, characterization, and theoretical modeling. We adapt the widely used two-stage method to fabricate isotropic-genesis polydomain LCEs and nematic-genesis LCEs with varying pre-stretches during polymerization. We characterize the thermal-induced spontaneous deformation and the temperature-dependent uniaxial stress-stretch responses of the LCEs. We identify a new relationship among the soft elasticity, the thermal-induced spontaneous deformation, and the pre-stretch during polymerization, in the LCEs under study. Building on classical theories and our experimental results, we develop a constitutive model to describe the uniaxial behaviors of various LCEs. The theoretical predictions agree well with the experimental results on uniaxial stress-stretch responses at different temperatures. Finally, we discuss the remaining challenges and future opportunities in synthesis-processing-property relationships of LCEs.
more »
« less
- Award ID(s):
- 2146409
- PAR ID:
- 10565349
- Publisher / Repository:
- Journal of the Mechanics and Physics of Solids
- Date Published:
- Journal Name:
- Journal of the Mechanics and Physics of Solids
- Volume:
- 196
- Issue:
- C
- ISSN:
- 0022-5096
- Page Range / eLocation ID:
- 105977
- Subject(s) / Keyword(s):
- liquid crystal elastomer synthesis-processing-property relationship thermomechanical coupling soft elasticity
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A hyperelasticity modelling approach is employed for capturing various and complex mechanical behaviours exhibited by macroscopically isotropic polydomain liquid crystal elastomers (LCEs). These include the highly non-linear behaviour of nematic-genesis polydomain LCEs, and the soft elasticity plateau in isotropic-genesis polydomain LCEs, under finite multimodal deformations (uniaxial and pure shear) using in-house synthesised acrylate-based LCE samples. Examples of application to capturing continuous softening (i.e., in the primary loading path), discontinuous softening (i.e., in the unloading path) and auxetic behaviours are also demonstrated on using extant datasets. It is shown that our comparatively simple model, which breaks away from the neo-classical theory of liquid crystal elastomers, captures the foregoing behaviours favourably, simply as states of hyperelasticity. Improved modelling results obtained by our approach compared with the existing models are also discussed. Given the success of the considered model in application to these datasets and deformations, the simplicity of its functional form (and thereby its implementation), and comparatively low(er) number of parameters, the presented isotropic hyperelastic strain energy function here is suggested for: (i) modelling the general mechanical behaviour of LCEs, (ii) the backbone in the neo-classical theory, and/or (iii) the basic hyperelastic model in other frameworks where the incorporation of the director, anisotropy, viscoelasticity, temperature, softening etc parameters may be required.more » « less
-
Coupling between viscoelasticity and soft elasticity in main-chain nematic Liquid Crystal ElastomersLiquid crystal elastomers (LCEs) are a class of smart elastomers exhibiting unusual mechanical behavior, including large energy dissipation and soft elasticity under uniaxial tensile loading. LCEs are composed of liquid crystal molecules, called mesogens, linked by a network of polymer chains. During deformation, the mesogens orient in the direction of the loading, leading to soft elasticity, which is an increase in strain at constant stress. The combination of mesogen rotation and intrinsic polymer viscoelasticity leads to a nonlinear viscoelastic soft elastic behavior. The aim of this paper is to investigate the coupling between the viscoelastic mechanisms and soft elasticity in main chain LCEs. We propose a rheological model in which the mesogen rotation during deformation is represented by a reversible slider while viscoelastic relaxation mechanisms are modeled as series of Maxwell elements coupled or decoupled with mesogen rotation. Fitting this model to experimental data demonstrate that the coupling between polymer chain viscoelasticity and mesogen rotation is partial, i.e. the long-time relaxation mechanisms are coupled and the short-time relaxation mechanisms are decoupled from mesogen rotation. Furthermore, we show that the viscosity of mesogen rotation is not necessary to properly predict the elastic modulus during the soft elasticity but it is needed to properly predict the initiation of the phenomenon. \end{abstract}more » « less
-
Abstract Liquid crystal elastomers (LCEs) exhibit unique mechanical properties of soft elasticity and reversible shape‐changing behaviors, and so serve as potentially transformative materials for various protective and actuation applications. This study contributes to filling a critical knowledge gap in the field by investigating the microscale mesogen organization of nematic LCEs with diverse macroscopic deformation. A polarized Fourier transform infrared light spectroscopy (FTIR) tester is utilized to examine the mesogen organizations, including both the nematic director and mesogen order parameter. Three types of material deformation are analyzed: uniaxial tension, simple shear, and bi‐axial tension, which are all commonly encountered in practical designs of LCEs. By integrating customized loading fixtures into the FTIR tester, mesogen organizations are examined across varying magnitudes of strain levels for each deformation mode. Their relationships with macroscopic stress responses are revealed and compared with predictions from existing theories. Furthermore, this study reveals unique features of mesogen organizations that have not been previously reported, such as simultaneous evolutions of the mesogen order parameter and nematic director in simple shear and bi‐axial loading conditions. Overall, the findings presented in this study offer significant new insights for future rational designs, modeling, and applications of LCE materials.more » « less
-
Abstract Nematic monodomain liquid crystal elastomers (LCEs) undergo efficient temperature‐induced reversible shape‐shifting around the nematic‐isotropic transition temperature (Tni) due to the presence of the liquid‐crystalline order of mesogens. Usually, theTniof nematic LCEs is much higher than the human body temperature, and therefore LCEs are not often considered for biomedical applications. This study describes an LCE system where theTniis tuned by substitution of the rigid mesogens RM257 with a flexible backbone PEGDA250. By systematically substituting the RM257 with PEGDA250, theTniof LCEs was observed to decrease from 66°C to 23°C. A rate‐optimized LCE material was fabricated with 10 mol % rigid mesogens substituted with a flexible backbone that demonstratedTniat 32°C, in‐between the room temperature of 20°C and the body temperature of 37°C. TheTniallowed the programmed shape at room temperature, quick shape‐shifting upon exposure to body temperature, and before‐programmed shape when kept at body temperature. This LCE material displayed reversible length change of 23%, opacity change, and shape change between room temperature and body temperature.more » « less
An official website of the United States government
