skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Effects of genomic and functional diversity on stand-level productivity and performance of non-native Arabidopsis
Biodiversity can affect the properties of groups of organisms, such as ecosystem function and the persistence of colonizing populations. Genomic data offer a newly available window to diversity, complementary to other measures like taxonomic or phenotypic diversity. We tested whether native genetic diversity in field experimental stands of Arabidopsis thaliana affected their aboveground biomass and fecundity in their colonized range. We constructed some stands of genotypes that we a priori predicted would differ in performance or show overyielding. We found no relationship between genetic diversity and stand total biomass. However, increasing stand genetic diversity increased fecundity in high-resource conditions. Polyculture (multiple genotype) stands consistently yielded less biomass than expected based on the yields of component genotypes in monoculture. This under-yielding was strongest in stands with late-flowering and high biomass genotypes, potentially due to interference competition by these genotypes. Using a new implementation of association mapping, we identified genetic loci whose diversity was associated with stand-level yield, revealing a major flowering time locus associated with under-yielding of polycultures. Our field experiment supports community ecology studies that find a range of diversity-function relationships. Nevertheless, our results suggest diversity in colonizing propagule pools can enhance population fitness. Furthermore, interference competition among genotypes differing in flowering time might limit the advantages of polyculture.  more » « less
Award ID(s):
1757324
PAR ID:
10252778
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
287
Issue:
1937
ISSN:
0962-8452
Page Range / eLocation ID:
20202041
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hui, Dafeng (Ed.)
    Abstract While the relationship between genetic diversity and plant productivity has been established for many species, it is unclear whether environmental conditions and biotic associations alter the nature of the relationship. To address this, we investigated the interactive effects of genotypic diversity, drought and mycorrhizal association on plant productivity and plant traits. Our mesocosm study was set up at the Konza Prairie Biological Research Station, located in the south of Manhattan, Kansas. Andropogon gerardii, the focal species for our study, was planted in two levels of genotypic richness treatment: monoculture or three-genotype polyculture. A rainout shelter was constructed over half of the experimental area to impose a drought and Thiophanate-methyl fungicide was used to suppress arbuscular mycorrhizal fungi in selected pots within each genotypic richness and drought treatment. Genotypic richness and mycorrhizal association did not affect above-ground biomass of A. gerardii. Drought differentially affected the above-ground biomass, the number of flowers and bolts of A. gerardii genotypes, and the biomass and the functional traits also differed for monoculture versus polyculture. Our results suggest that drought and genotypic richness can have variable outcomes for different genotypes of a plant species. 
    more » « less
  2. Abstract In Mediterranean climates, the timing of seasonal rains determines germination, flowering phenology and fitness. As climate change alters seasonal precipitation patterns, it is important to ask how these changes will affect the phenology and fitness of plant populations. We addressed this question experimentally with the annual plant speciesArabidopsis thaliana.In a first experiment, we manipulated the date of rainfall onset and recorded germination phenology on sand and soil substrates. In a second experiment, we manipulated germination date, growing season length and mid‐season drought to measure their effects on flowering time and fitness. Within each experiment, we manipulated seed dormancy and flowering time using multilocus near‐isogenic lines segregating strong and weak alleles of the seed dormancy geneDOG1and the flowering time geneFRI. We synthesized germination phenology data from the first experiment with fitness functions from the second experiment to project population fitness under different seasonal rainfall scenarios.Germination phenology tracked rainfall onset but was slower and more variable on sand than on soil. Many seeds dispersed on sand in spring and summer delayed germination until the cooler temperatures of autumn. The high‐dormancyDOG1allele also prevented immediate germination in spring and summer. Germination timing strongly affected plant fitness. Fecundity was highest in the October germination cohort and declined in spring germinants. The late floweringFRIallele had lower fecundity, especially in early fall and spring cohorts. Projections of population fitness revealed that: (1) Later onset of autumn rains will negatively affect population fitness. (2) Slow, variable germination on sand buffers populations against fitness impacts of variable spring and summer rainfall. (3) Seasonal selection favours high dormancy and early flowering genotypes in a Mediterranean climate with hot dry summers. The high‐dormancyDOG1allele delayed germination of spring‐dispersed fresh seeds until more favourable early fall conditions, resulting in higher projected population fitness.These findings suggest that Mediterranean annual plant populations are vulnerable to changes in seasonal precipitation, especially in California where rainfall onset is already occurring later. The fitness advantage of highly dormant, early flowering genotypes helps explain the prevalence of this strategy in Mediterranean populations. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Abstract While the positive relationship between plant diversity and ecosystem functioning is frequently observed and often attributed to direct plant–plant interactions, it remains unclear whether and how the effects of plant diversity endure through soil legacy effects, particularly at the level of genotypic diversity. We manipulated the genotypic diversity ofScirpus mariqueterand tested its soil legacy effects on a conspecific phytometer under low‐ and high‐water availability conditions. We found that genotypic diversity enhanced phytometer productivity through soil legacies, with stronger effects under low‐water availability conditions, improving its resistance to water stress. Moreover, this effect was attributed to the association between asexual and sexual reproductive strategies by increasing ramet number to ensure plant survival under low‐water availability and promoting sexual reproduction to escape stress. The observed diversity effects were primarily associated with increased levels of microbial biomass in soils trained by populations with diverse genotypes. Our findings highlight the importance of plant genotypic diversity in modulating ecosystem functioning through soil legacies and call for management measures that promote genetic diversity to make ecosystems sustainable in the face of climate change. 
    more » « less
  4. Background The post-harvest recovery and sustained productivity of Nothofagus pumilio forests in Tierra del Fuego may be affected by the abundance and composition of ectomycorrhizal fungi (EMF). Timber harvesting alters EMF community structure in many managed forests, but the impacts of harvesting can vary with the management strategy. The implementation of variable retention (VR) management can maintain, increase, or decrease the diversity of many species, but the effects of VR on EMF in the forests of southern Patagonia have not been studied, nor has the role of EMF in the regeneration process of these forests. Methods We evaluated the effects of VR management on the EMF community associated with N. pumilio seedlings. We quantified the abundance, composition, and diversity of EMF across aggregate (AR) and dispersed (DR) retention sites within VR managed areas, and compared them to primary forest (PF) unmanaged stands. EMF assemblage and taxonomic identities were determined by ITS-rDNA sequencing of individual root tips sampled from 280 seedlings across three landscape replicates. To better understand seedling performance, we tested the relationships between EMF colonization, EMF taxonomic composition, seedling biomass, and VR treatment. Results The majority of EMF taxa were Basidiomycota belonging to the families Cortinariaceae ( n  = 29), Inocybaceae ( n  = 16), and Thelephoraceae ( n  = 8), which was in agreement with other studies of EMF diversity in Nothofagus forests. EMF richness and colonization was reduced in DR compared to AR and PF. Furthermore, EMF community composition was similar between AR and PF, but differed from the composition in DR. EMF community composition was correlated with seedling biomass and soil moisture. The presence of Peziza depressa was associated with higher seedling biomass and greater soil moisture, while Inocybe fibrillosibrunnea and Cortinarius amoenus were associated with reduced seedling biomass and lower soil moisture. Seedling biomass was more strongly related to retention type than EMF colonization, richness, or composition. Discussion Our results demonstrate reduced EMF attributes and altered composition in VR treatments relative to PF stands, with stronger impacts in DR compared to AR. This suggests that VR has the potential to improve the conservation status of managed stands by supporting native EMF in AR. Our results also demonstrate the complex linkages between retention treatments, fungal community composition, and tree growth at individual and stand scales. 
    more » « less
  5. Abstract Increasing temperatures during climate change are known to alter the phenology across diverse plant taxa, but the evolutionary outcomes of these shifts are poorly understood. Moreover, plant temperature‐sensing pathways are known to interact with competition‐sensing pathways, yet there remains little experimental evidence for how genotypes varying in temperature responsiveness react to warming in realistic competitive settings.We compared flowering time and fitness responses to warming and competition for two near‐isogenic lines (NILs) ofArabidopsis thalianatransgressively segregating temperature‐sensitive and temperature‐insensitive alleles for major‐effect flowering time genes. We grew focal plants of each genotype in intraspecific and interspecific competition in four treatments contrasting daily temperature profiles in summer and fall under contemporary and warmed conditions. We measured phenology and fitness of focal plants to quantify plastic responses to season, temperature and competition and the dependence of these responses on flowering time genotype.The temperature‐insensitive NIL was constitutively early flowering and less fit, except in a future‐summer climate in which its fitness was higher than the later flowering, temperature‐sensitive NIL in low competition. The late‐flowering NIL showed accelerated flowering in response to intragenotypic competition and to increased temperature in the summer but delayed flowering in the fall. However, its fitness fell with rising temperatures in both seasons, and in the fall its marginal fitness gain from decreasing competition was diminished in the future.Functional alleles at temperature‐responsive genes were necessary for plastic responses to season, warming and competition. However, the plastic genotype was not the most fit in every experimental condition, becoming less fit than the temperature‐canalized genotype in the warm summer treatment.Climate change is often predicted to have deleterious effects on plant populations, and our results show how increased temperatures can act through genotype‐dependent phenology to decrease fitness. Furthermore, plasticity is not necessarily adaptive in rapidly changing environments since a nonplastic genotype proved fitter than a plastic genotype in a warming climate treatment. Aplain language summaryis available for this article. 
    more » « less