Hydrated vanadium pentoxide (VOH) can deliver a gravimetric capacity as high as 400 mA h g −1 owing to the variable valence states of the V cation from 5+ to 3+ in an aqueous zinc ion battery. The incorporation of divalent transition metal cations has been demonstrated to overcome the structural instability, sluggish kinetics, fast capacity degradation, and serious polarization. The current study reveals that the catalytic effects of transition metal cations are probably the key to the significantly improved electrochemical properties and battery performance because of the higher covalent character of 55% in the Cu–O bond in comparison with 32% in the Mg–O bond in the respective samples. Cu( ii ) pre-inserted VOH (CuVOH) possesses a significantly enhanced intercalation storage capacity, an increased discharge voltage, great transport properties, and reduced polarization, while both VOH and Mg( ii ) pre-inserted VOH (MgVOH) demonstrate similar electrochemical properties and performances, indicating that the incorporation of Mg cations has little or no impact. For example, CuVOH has a redox voltage gap of 0.02 V, much smaller than 0.25 V for VOH and 0.27 V for MgVOH. CuVOH shows an enhanced exchange current density of 0.23 A g −1 , compared to 0.20 A g −1 for VOH and 0.19 A g −1 for MgVOH. CuVOH delivers a zinc ion storage capacity of 379 mA h g −1 , higher than 349 mA h g −1 for MgVOH and 337 mA h g −1 for VOH at 0.5 A g −1 . CuVOH shows an energy efficiency of 72%, superior to 53% for VOH and 55% for MgVOH. All of the results suggest that pre-inserted Cu( ii ) cations played a critical role in catalyzing the zinc ion intercalation reaction, while the Mg( ii ) cations did not exert a detectable catalytic effect.
more »
« less
Enhanced charge storage of nanometric ζ-V 2 O 5 in Mg electrolytes
V 2 O 5 is of interest as a Mg intercalation electrode material for Mg batteries, both in its thermodynamically stable layered polymorph (α-V 2 O 5 ) and in its metastable tunnel structure (ζ-V 2 O 5 ). However, such oxide cathodes typically display poor Mg insertion/removal kinetics, with large voltage hysteresis. Herein, we report the synthesis and evaluation of nanosized ( ca . 100 nm) ζ-V 2 O 5 in Mg-ion cells, which displays significantly enhanced electrochemical kinetics compared to microsized ζ-V 2 O 5 . This effect results in a significant boost in stable discharge capacity (130 mA h g −1 ) compared to bulk ζ-V 2 O 5 (70 mA h g −1 ), with reduced voltage hysteresis (1.0 V compared to 1.4 V). This study reveals significant advancements in the use of ζ-V 2 O 5 for Mg-based energy storage and yields a better understanding of the kinetic limiting factors for reversible magnesiation reactions into such phases.
more »
« less
- Award ID(s):
- 1809866
- PAR ID:
- 10252898
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 12
- Issue:
- 43
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 22150 to 22160
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Substantial improvements in cycle life, rate performance, accessible voltage, and reversible capacity are required to realize the promise of Li-ion batteries in full measure. Here, we have examined insertion electrodes of the same composition (V 2 O 5 ) prepared according to the same electrode specifications and comprising particles with similar dimensions and geometries that differ only in terms of their atomic connectivity and crystal structure, specifically two-dimensional (2D) layered α-V 2 O 5 that crystallizes in an orthorhombic space group and one-dimensional (1D) tunnel-structured ζ-V 2 O 5 crystallized in a monoclinic space group. By using particles of similar dimensions, we have disentangled the role of specific structural motifs and atomistic diffusion pathways in affecting electrochemical performance by mapping the dynamical evolution of lithiation-induced structural modifications using ex situ scanning transmission X-ray microscopy, operando synchrotron X-ray diffraction measurements, and phase-field modeling. We find the operation of sharply divergent mechanisms to accommodate increasing concentrations of Li-ions: a series of distortive phase transformations that result in puckering and expansion of interlayer spacing in layered α-V 2 O 5 , as compared with cation reordering along interstitial sites in tunnel-structured ζ-V 2 O 5 . By alleviating distortive phase transformations, the ζ-V 2 O 5 cathode shows reduced voltage hysteresis, increased Li-ion diffusivity, alleviation of stress gradients, and improved capacity retention. The findings demonstrate that alternative lithiation mechanisms can be accessed in metastable compounds by dint of their reconfigured atomic connectivity and can unlock substantially improved electrochemical performance not accessible in the thermodynamically stable phase.more » « less
-
Abstract Ni‐rich LiNi0.8Co0.1Mn0.1O2(NCM811) has been considered as a promising cathode material for high energy density lithium‐ion batteries. However, it experiences undesirable interfacial side‐reactions with the electrolyte, which lead to a rapid capacity decay. In this work, a homogeneous precipitation method is proposed for forming a uniform silicon dioxide (SiO2) coating on the NCM811 surface. The strong Si−O network provided a stable protective layer between the NCM811 active material and electrolyte to improve the electrochemical stability. As a result, the NCM811@SiO2cathode showed superior cycling stability (84.9 % after 100 cycles at 0.2 C) and rate capability (142.7 mA h g−1at 5 C) compared to the pristine NCM811 cathode (56.6 % after 100 cycles, 127.9 mA h g−1at 5 C). Moreover, the SiO2coating effectively suppressed voltage decay and pulverization of the NCM811 particles during long term cycling. This uniform coating technique offers a viable approach for stabilizing Ni‐rich cathode materials for high‐energy density lithium‐ion batteries.more » « less
-
Generating oxygen vacancies (Vö) in vanadium pentoxide (V 2 O 5 ) has been demonstrated as an effective approach to tailor its electrochemical properties. The present study investigates three different kinds of conductive polymer (CP = PPy, PEDOT, and PANI) coated V 2 O 5 nanofibers with Vö generated at the interface during the polymerization process. Surface Vö form a local electric field and promote the charge transfer kinetics of the resulting Vö-V 2 O 5 /CP nanocables, and the accompanying V 4+ and V 3+ ions may also catalyze the redox reactions and improve the supercapacitor performance. The differences and similarities of three different CP coatings have been compared and discussed, and are dependent on their polymerization conditions and coating thickness. The distribution of Vö in the surface layer and in the bulk has been elaborated and the corresponding effects on the electrochemical properties and supercapacitor performance have also been investigated. Vö-V 2 O 5 /CP can deliver a high capacity of up to 614 F g −1 at a current rate of 0.5 A g −1 and supercapacitors with Vö-V 2 O 5 /CP demonstrated excellent cycling stability over 15 000 cycles at a rate of 10 A g −1 .more » « less
-
Nickel phosphide (Ni 5 P 4 ) nanosheets are synthesized using in situ chemical vapor deposition of P on Ni foam. The thickness of the as-synthesized Ni 5 P 4 film is determined to be ∼5 nm, using atomic force microscopy (AFM). The small thickness shortens the diffusion path of Li ions and results in fast ion transport. In addition, the 2D Ni 5 P 4 nanosheets seamlessly connect to the Ni foam, which facilitates electron transfer between Ni 5 P 4 and the Ni current collector. Therefore, the binder/carbon free-nickel supported Ni 5 P 4 shows fast rate performance as an anode for lithium-ion batteries (LIBs). The specific capacity of 2D Ni 5 P 4 is obtained as 600 mA h g −1 at a cycling rate of 0.1C, approaching the theoretical capacity of 768 mA h g −1 . Even at a rate of 0.5C, the capacity remains as 450 mA h g −1 over 100 cycles. A capacity >100 mA h g −1 is retained at a very high rate of 20C. Ni 5 P 4 also exhibits a low voltage of ∼0.5 V with respect to Li metal, which makes it a suitable negative electrode for LIBs. In operando 31 P NMR and 7 Li NMR are employed to probe the lithiation and de-lithiation mechanisms upon electrochemical cycling.more » « less