skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring Generative Models with Middle School Students
Applications of generative models such as Generative Adversarial Networks (GANs) have made their way to social media platforms that children frequently interact with. While GANs are associated with ethical implications pertaining to children, such as the generation of Deepfakes, there are negligible efforts to educate middle school children about generative AI. In this work, we present a generative models learning trajectory (LT), educational materials, and interactive activities for young learners with a focus on GANs, creation and application of machine-generated media, and its ethical implications. The activities were deployed in four online workshops with 72 students (grades 5-9). We found that these materials enabled children to gain an understanding of what generative models are, their technical components and potential applications, and benefits and harms, while reflecting on their ethical implications. Learning from our findings, we propose an improved learning trajectory for complex socio-technical systems.  more » « less
Award ID(s):
2022502
PAR ID:
10252918
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Applications of Generative Machine Learning techniques such as Generative Adversarial Networks (GANs) are used to generate new instances of images, music, text, and videos. While GANs have now become commonplace on social media, a part of children’s lives, and have considerable ethical implications, existing K-12 AI education curricula do not include generative AI. We present a new module, “What are GANs?”, that teaches middle school students how GANs work and how they can create media using GANs. We developed an online, team-based game to simulate how GANs work. Students also interacted with up to four web tools that apply GANs to generate media. This module was piloted with 72 middle school students in a series of online workshops. We provide insight into student usage, understanding, and attitudes towards this lesson. Finally, we give suggestions for integrating this lesson into AI education curricula. 
    more » « less
  2. This research-to-practice paper presents a curriculum, “AI Literacy for All,” to promote an interdisciplinary under-standing of AI, its socio-technical implications, and its practical applications for all levels of education. With the rapid evolution of artificial intelligence (AI), there is a need for AI literacy that goes beyond the traditional AI education curriculum. AI literacy has been conceptualized in various ways, including public literacy, competency building for designers, conceptual understanding of AI concepts, and domain-specific upskilling. Most of these conceptualizations were established before the public release of Generative AI (Gen-AI) tools such as ChatGPT. AI education has focused on the principles and applications of AI through a technical lens that emphasizes the mastery of AI principles, the mathematical foundations underlying these technologies, and the programming and mathematical skills necessary to implement AI solutions. The non-technical component of AI literacy has often been limited to social and ethical implications, privacy and security issues, or the experience of interacting with AI. In AI Literacy for all, we emphasize a balanced curriculum that includes technical as well as non-technical learning outcomes to enable a conceptual understanding and critical evaluation of AI technologies in an interdisciplinary socio-technical context. The paper presents four pillars of AI literacy: understanding the scope and technical dimensions of AI, learning how to interact with Gen-AI in an informed and responsible way, the socio-technical issues of ethical and responsible AI, and the social and future implications of AI. While it is important to include all learning outcomes for AI education in a Computer Science major, the learning outcomes can be adjusted for other learning contexts, including, non-CS majors, high school summer camps, the adult workforce, and the public. This paper advocates for a shift in AI literacy education to offer a more interdisciplinary socio-technical approach as a pathway to broaden participation in AI. This approach not only broadens students' perspectives but also prepares them to think critically about integrating AI into their future professional and personal lives. 
    more » « less
  3. Human activity recognition (HAR) is the process of using mobile sensor data to determine the physical activities performed by individuals. HAR is the backbone of many mobile healthcare applications, such as passive health monitoring systems, early diagnosing systems, and fall detection systems. Effective HAR models rely on deep learning architectures and big data in order to accurately classify activities. Unfortunately, HAR datasets are expensive to collect, are often mislabeled, and have large class imbalances. State-of-the-art approaches to address these challenges utilize Generative Adversarial Networks (GANs) for generating additional synthetic data along with their labels. Problematically, these HAR GANs only synthesize continuous features — features that are represented by real numbers — recorded from gyroscopes, accelerometers, and other sensors that produce continuous data. This is limiting since mobile sensor data commonly has discrete features that provide additional context such as device location and the time-of-day, which have been shown to substantially improve HAR classification. Hence, we studied Conditional Tabular Generative Adversarial Networks (CTGANs) for data generation to synthesize mobile sensor data containing both continuous and discrete features, a task never been done by state-of-the-art approaches. We show HAR-CTGANs generate data with greater realism resulting in allowing better downstream performance in HAR models, and when state-of-the-art models were modified with HAR-CTGAN characteristics, downstream performance also improves. 
    more » « less
  4. null (Ed.)
    In high energy physics (HEP), jets are collections of correlated particles produced ubiquitously in particle collisions such as those at the CERN Large Hadron Collider (LHC). Machine-learning-based generative models, such as generative adversarial networks (GANs), have the potential to significantly accelerate LHC jet simulations. However, despite jets having a natural representation as a set of particles in momentum-space, a.k.a. a particle cloud, to our knowledge there exist no generative models applied to such a dataset. We introduce a new particle cloud dataset (JetNet), and, due to similarities between particle and point clouds, apply to it existing point cloud GANs. Results are evaluated using (1) the 1-Wasserstein distance between high- and low-level feature distributions, (2) a newly developed Fréchet ParticleNet Distance, and (3) the coverage and (4) minimum matching distance metrics. Existing GANs are found to be inadequate for physics applications, hence we develop a new message passing GAN (MPGAN), which outperforms existing point cloud GANs on virtually every metric and shows promise for use in HEP. We propose JetNet as a novel point-cloud-style dataset for the machine learning community to experiment with, and set MPGAN as a benchmark to improve upon for future generative models. 
    more » « less
  5. Generative models have recently gained popularity in remote sensing, offering substantial benefits for interpreting and utilizing satellite imagery across diverse applications such as climate monitoring, urban planning, and wildfire detection. These models are particularly adept at addressing the challenges posed by satellite images, which often exhibit domain variability due to seasonal changes, sensor characteristics, and, especially, variations in spectral bands. Such variability can significantly impact model performance across various tasks. In response to these challenges, our work introduces an adaptive approach that harnesses the capabilities of generative adversarial networks (GANs), augmented with contrastive learning, to generate target domain images that account for multispectral band variations effectively. By maximizing mutual information between corresponding patches and leveraging the power of GANs, our model aims to generate realistic-looking images across different multispectral domains. We present a comparative analysis of our model against other well-established generative models, demonstrating its efficacy in generating high-quality satellite images while effectively managing domain variations inherent to multispectral diversity. 
    more » « less