This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students’ (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2) what types of in-game features (i.e. student in-game behaviors, math anxiety, mathematical strategies) were associated with student math knowledge scores. The results indicated that the Random Forest algorithm showed the best performance (i.e. the accuracy of models, error measures) in predicting posttest math knowledge scores among the seven algorithms employed. Out of 37 features included in the model, the validity of the students’ first mathematical transformation was the most predictive of their posttest math knowledge scores. Implications for game learning analytics and supporting students’ algebraic learning are discussed based on the findings.
more »
« less
The Contour to Classification Game
The Contour to Classification game is a browser-based game that teaches middle school students basic concepts in supervised learning. The game is an online variant of the Neural Network game that was presented at AAAI Fall Symposium Teaching AI in K-12 track in 2019. We share preliminary findings from implementing the online version of the original Neural Network game in a pilot research study and describe the game’s evolution to the Contour to Classification game. The new game uses a simulation of a neural network to engage students, through digital drawing and selection interactions, in the classification of images. The players act as nodes in a multi-step process of compositing salient smaller features to form larger features and ultimately a partial contour of an object that is used to make a prediction. After evaluating the prediction, information is sent back through the network in processes mimicking back propagation and gradient descent. Additional rounds of the game can be played to witness how the network evolves and gets “better” at classifying images from contours. Through this game, we aimed for students to learn the structure, components, and functioning of a neural network, and the processes involved in supervised learning. The Contour to Classification game supports online student learning by providing the image classification experience using purely visual inputs to each layer. We will conclude with a discussion of if and how the evolving design addresses classroom needs and scaling considerations.
more »
« less
- Award ID(s):
- 2022502
- PAR ID:
- 10252929
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 35
- Issue:
- 17
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 15583-15590
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding students’ multi-party epistemic and topic based-dialogue contributions, or how students present knowledge in group-based chat interactions during collaborative game-based learning, offers valuable insights into group dynamics and learning processes. However, manually annotating these contributions is labor-intensive and challenging. To address this, we develop an automated method for recognizing dialogue acts from text chat data of small groups of middle school students interacting in a collaborative game-based learning environment. Our approach utilizes dual contrastive learning and label-aware data augmentation to fine-tune large language models’ underlying embedding representations within a supervised learning framework for epistemic and topic-based dialogue act classification. Results show that our method achieves a performance improvement of 4% to 8% over baseline methods in two key classification scenarios. These findings highlight the potential for automated dialogue act recognition to support understanding of how meaning-making occurs by focusing on the development and evolution of knowledge in group discourse, ultimately providing teachers with actionable insights to better support student learning.more » « less
-
We explore the use of deep convolutional neural networks (CNNs) trained on overhead imagery of biomass sorghum to ascertain the relationship between single nucleotide polymorphisms (SNPs), or groups of related SNPs, and the phenotypes they control. We consider both CNNs trained explicitly on the classification task of predicting whether an image shows a plant with a reference or alternate version of various SNPs as well as CNNs trained to create data-driven features based on learning features so that images from the same plot are more similar than images from different plots, and then using the features this network learns for genetic marker classification. We characterize how efficient both approaches are at predicting the presence or absence of a genetic markers, and visualize what parts of the images are most important for those predictions. We find that the data-driven approaches give somewhat higher prediction performance, but have visualizations that are harder to interpret; and we give suggestions of potential future machine learning research and discuss the possibilities of using this approach to uncover unknown genotype × phenotype relationships.more » « less
-
null (Ed.)The success of supervised learning requires large-scale ground truth labels which are very expensive, time- consuming, or may need special skills to annotate. To address this issue, many self- or un-supervised methods are developed. Unlike most existing self-supervised methods to learn only 2D image features or only 3D point cloud features, this paper presents a novel and effective self-supervised learning approach to jointly learn both 2D image features and 3D point cloud features by exploiting cross-modality and cross-view correspondences without using any human annotated labels. Specifically, 2D image features of rendered images from different views are extracted by a 2D convolutional neural network, and 3D point cloud features are extracted by a graph convolution neural network. Two types of features are fed into a two-layer fully connected neural network to estimate the cross-modality correspondence. The three networks are jointly trained (i.e. cross-modality) by verifying whether two sampled data of different modalities belong to the same object, meanwhile, the 2D convolutional neural network is additionally optimized through minimizing intra-object distance while maximizing inter-object distance of rendered images in different views (i.e. cross-view). The effectiveness of the learned 2D and 3D features is evaluated by transferring them on five different tasks including multi-view 2D shape recognition, 3D shape recognition, multi-view 2D shape retrieval, 3D shape retrieval, and 3D part-segmentation. Extensive evaluations on all the five different tasks across different datasets demonstrate strong generalization and effectiveness of the learned 2D and 3D features by the proposed self-supervised method.more » « less
-
In the recent years, reciprocal link prediction has received some attention from the data mining and social network analysis researchers, who solved this problem as a binary classification task. However, it is also important to predict the interval time for the creation of reciprocal link. This is a challenging problem for two reasons: First, the lack of effective features, because well-known link prediction features are designed for undirected networks and for the binary classification task, hence they do not work well for the interval time prediction; Second, the presence of censored data instances makes the traditional supervised regression methods unsuitable for solving this problem. In this paper, we propose a solution for the reciprocal link interval time prediction task. We map this problem into survival analysis framework and show through extensive experiments on real-world datasets that, survival analysis methods perform better than traditional regression, neural network based model and support vector regression (SVR).more » « less
An official website of the United States government

