skip to main content

Title: Silicon Microreactor as a Fast Charge, Long Cycle Life Anode with High Initial Coulombic Efficiency Synthesized via a Scalable Method
Applications of silicon as a high-performance anode material has been impeded by its low intrinsic conductivity and huge volume expansion (> 300%) during lithiation. To address these problems, nano-Si particles along with conductive coatings and engineered voids are often employed, but this results in high cost anodes. Here, we report a scalable synthesis method that can realize high specific capacity (~800 mAh g-1), ultrafast charge/discharge (at 8 A g-1 Si) and high initial Coulombic efficiency (~90%) with long cycle life (1000 cycles) at the same time. To achieve 1000 cycle stability, micron-sized Si particles are subjected to high-energy ball milling to create nanostructured Si building blocks with nano-channel shaped voids encapsulated inside a nitrogen (N)-doped carbon shell (termed as Si micro-reactor). The nano-channel voids inside a Si micro-reactor not only offer the space to accommodate the volume expansion of Si, but also provide fast pathways for Li ion diffusion into the center of the nanostructured Si core and thus ultrafast charge/discharge capability. The porous N-doped carbon shell helps to improve the conductivity while allowing fast Li ion transport and confining the volume expansion within the Si micro-reactor. Submicron-sized Si micro-reactors with limited specific surface area (35 m2 g-1) afford sufficient more » electrode/electrolyte interfacial area for fast lithiation/delithiation, leading to the specific capacity ranging from ~800 to 420 mAh g-1 under ultrafast charging conditions (8 A g-1), but not too much interfacial area for surface side reactions and thus high initial coulombic efficiency (~90%). Since Si micro-reactors with superior electrochemical properties are synthesized via an industrially scalable and eco-friendly method, they have the potential for practical applications in the future. « less
; ; ; ;
Award ID(s):
1660572 1918991
Publication Date:
Journal Name:
ACS applied energy materials
Page Range or eLocation-ID:
4744 – 4757
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Silicon is regarded as one of the most promising anode materials for lithium-ion batteries. Its high theoretical capacity (4000 mAh/g) has the potential to meet the demands of high-energy density applications, such as electric air and ground vehicles. The volume expansion of Si during lithiation is over 300%, indicating its promise as a large strain electrochemical actuator. A Si-anode battery is multifunctional, storing electrical energy and actuating through volume change by lithium-ion insertion.

    To utilize the property of large volume expansion, we design, fabricate, and test two types of Si anode cantilevers with bi-directional actuation: (a) bimorph actuator andmore »(b) insulated double unimorph actuator. A transparent battery chamber is fabricated, provided with NCM cathodes, and filled with electrolyte. The relationship between state of charge and electrode deformation is measured using current integration and high-resolution photogrammetry, respectively. The electrochemical performance, including voltage versus capacity and Coulombic efficiency versus cycle number, is measured for several charge/discharge cycles. Both configurations exhibit deflections in two directions and can store energy. In case (a), the largest deflection is roughly 35% of the cantilever length. Twisting and unexpected bending deflections are observed in this case, possibly due to back-side lithiation, non-uniform coating thickness, and uneven lithium distribution. In case (b), the single silicon active coating layer can deflect 12 passive layers.

    « less
  2. Lithium metal–selenium (Li–Se) batteries offer high volumetric energy but are limited in their cycling life and fast charge characteristics. Here a facile approach is demonstrated to synthesize hierarchically porous hollow carbon spheres that host Se (Se@HHCS) and allow for state-of-the-art electrochemical performance in a standard carbonate electrolyte (1 M LiPF 6 in 1 : 1 EC : DEC). The Se@HHCS electrodes display among the most favorable fast charge and cycling behavior reported. For example, they deliver specific capacities of 442 and 357 mA h g −1 after 1500 and 2000 cycles at 5C and 10C, respectively. At 2C, Se@HHCS delivers 558 mA h gmore »−1 after 500 cycles, with cycling coulombic efficiency of 99.9%. Post-mortem microstructural analysis indicates that the structures remain intact during extended cycling. Per GITT analysis, Se@HHCS possesses significantly higher diffusion coefficients in both lithiation and delithiation processes as compared to the baseline. The superior performance of Se@HHCS is directly linked to its macroscopic and nanoscale pore structure: the hollow carbon sphere morphology as well as the remnant open nanoporosity accommodates the 69% volume expansion of the Li to Li 2 Se transformation, with the nanopores also providing a complementary fast ion diffusion path.« less
  3. Sulfur-polyacrylonitrile (S-PAN) composite has been developed as a novel composite cathode material to address many issues with conventional Li-S batteries (LSBs). In this study, a freestanding S-PAN-CNT composite is first developed as the cathode material for LSBs, which is capable to deliver a high specific capacity of 1458 mAh g-1 at 0.2C and a desirable high-rate performance of 1097 mAh g-1 at 2.0 C. Furthermore, a Li2S-PAN-CNT cathode is obtained via in-situ direct pre-lithiation of S-PAN-CNT composite, which exhibits an even improved discharge capacity, cycling performance, and rate capability. Lastly, we develop Li-ion sulfur full batteries based on both S-PAN-CNTmore »and Li2S-PAN-CNT cathode. The excellent electrochemical performance and corresponding theoretical estimation both demonstrate that the proposed system as a promising metal-free Li-ion battery with a high specific capacity, good cycle life, and low cost.« less
  4. Lithium-sulfur (Li-S) batteries suffer from poor utilization of active material and short cycle life due to the complicated multi-step reaction mechanisms. Herein, three conditional cycling methods, i.e. asymmetrical cycling, constant voltage (CV) discharge cycling, and partial cycling are designed in order to increase the cyclability of Li-S batteries. It is found that the solid deposition process that takes place during the lower plateau of discharge is the major limiting step for achieving high discharge capacity and cycle retention, and the cathode surface coverage can be deferred by applying an optimal discharge/charge rate and CV discharge cycling. The asymmetrical cycling rendersmore »a specific capacity of ca. 700 mAh g-1 after 200 cycles, 30% higher than that under symmetrical cycling, while applying a CV discharge cycling enables a full retention of target specific capacity of ca. 800 mAh g-1 over 50 cycles. The partial cycling with a low number of phase transformation steps and reduced surface coverage at the end of discharge/charge also enhances cyclability. This work paves the way for understanding and improving the cycling performance of Li-S batteries without increasing the cost of electrode design or changing the configuration of the cell.« less
  5. The lithium-sulfur (Li-S) redox battery system is considered to be the most promising next-generation energy storage technology due to its high theoretical specific capacity (1673 mAh g−1), high energy density (2600 Wh kg−1), low cost, and the environmentally friendly nature of sulfur. Though this system is deemed to be the next-generation energy storage device for portable electronics and electric vehicles, its poor cycle life, low coulombic efficiency and low rate capability limit it from practical applications. These performance barriers were linked to several issues like polysulfide (LiPS) shuttle, inherent low conductivity of charge/discharge end products, and poor redox kinetics. Here,more »we review the recent developments made to alleviate these problems through an electrocatalysis approach, which is considered to be an effective strategy not only to trap the LiPS but also to accelerate their conversion reactions kinetics. Herein, the influence of different chemical interactions between the LiPS and the catalyst surfaces and their effect on the conversion of liquid LiPS to solid end products are reviewed. Finally, we also discussed the challenges and perspectives for designing cathode architectures to enable high sulfur loading along with the capability to rapidly convert the LiPS.« less