skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: First principles and experimental studies of empty Si 46 as anode materials for Li-ion batteries
The objective of this investigation was to utilize the first-principles molecular dynamics computational approach to investigate the lithiation characteristics of empty silicon clathrates (Si 46 ) for applications as potential anode materials in lithium-ion batteries. The energy of formation, volume expansion, and theoretical capacity were computed for empty silicon clathrates as a function of Li. The theoretical results were compared against experimental data of long-term cyclic tests performed on half-cells using electrodes fabricated from Si 46 prepared using a Hofmann-type elimination–oxidation reaction. The comparison revealed that the theoretically predicted capacity (of 791.6 mAh/g) agreed with experimental data (809 mAh/g) that occurred after insertion of 48 Li atoms. The calculations showed that overlithiation beyond 66 Li atoms can cause large volume expansion with a volume strain as high as 120%, which may correlate to experimental observations of decreasing capacities from the maximum at 1030 mAh/g to 553 mA h/g during long-term cycling tests. The finding suggests that overlithiation beyond 66 Li atoms may have caused damage to the cage structure and led to lower reversible capacities.  more » « less
Award ID(s):
1206795
PAR ID:
10391228
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Materials Research
Volume:
31
Issue:
23
ISSN:
0884-2914
Page Range / eLocation ID:
3657 to 3665
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Applications of silicon as a high-performance anode material has been impeded by its low intrinsic conductivity and huge volume expansion (> 300%) during lithiation. To address these problems, nano-Si particles along with conductive coatings and engineered voids are often employed, but this results in high cost anodes. Here, we report a scalable synthesis method that can realize high specific capacity (~800 mAh g-1), ultrafast charge/discharge (at 8 A g-1 Si) and high initial Coulombic efficiency (~90%) with long cycle life (1000 cycles) at the same time. To achieve 1000 cycle stability, micron-sized Si particles are subjected to high-energy ball milling to create nanostructured Si building blocks with nano-channel shaped voids encapsulated inside a nitrogen (N)-doped carbon shell (termed as Si micro-reactor). The nano-channel voids inside a Si micro-reactor not only offer the space to accommodate the volume expansion of Si, but also provide fast pathways for Li ion diffusion into the center of the nanostructured Si core and thus ultrafast charge/discharge capability. The porous N-doped carbon shell helps to improve the conductivity while allowing fast Li ion transport and confining the volume expansion within the Si micro-reactor. Submicron-sized Si micro-reactors with limited specific surface area (35 m2 g-1) afford sufficient electrode/electrolyte interfacial area for fast lithiation/delithiation, leading to the specific capacity ranging from ~800 to 420 mAh g-1 under ultrafast charging conditions (8 A g-1), but not too much interfacial area for surface side reactions and thus high initial coulombic efficiency (~90%). Since Si micro-reactors with superior electrochemical properties are synthesized via an industrially scalable and eco-friendly method, they have the potential for practical applications in the future. 
    more » « less
  2. Internal macropores in silicon/graphene/graphene nanoribbon (Si/Gr/GNR) hybrid anodes by facile thermal removal of sacrificial polymer, polyvinyl alcohol (PVA), are incorporated, to mitigate the volume expansion of silicon and to increase the silicon utilization and rate capability of the anode. The resulting Si/Gr/GNR hybrid anodes give a high capacity of 1874 mAh g−1at 0.1 C, based on total weight of the electrode including binder and carbon, as well as great capacity retention of above 800 mAh g−1after 350 cycles at 0.3 C. The mitigation of volume expansion by carrying out in situ thickness change measurements of small pouch cells via a dilatometer is further demonstrated, exhibiting the saturation of volume expansion below 40% after 100 cycles due to the incorporation of the macropores. Moreover, Si/Gr/GNR anodes with pores exhibit superior rate capability, yielding 1,250 mAh g−1at 2 C rate due to the effective network of graphene sheets and GNRs. 
    more » « less
  3. At low guest atom concentrations, Si clathrates can be viewed as semiconductors, with the guest atoms acting as dopants, potentially creating alternatives to diamond Si with exciting optoelectronic and spin properties. Studying Si clathrates with different guest atoms would not only provide insights into the electronic structure of the Si clathrates but also give insights into the unique properties that each guest can bring to the Si clathrate structure. However, the synthesis of Si clathrates with guests other than Na is challenging. In this study, we have developed an alternative approach, using thermal diffusion into type II Si clathrate with an extremely low Na concentration, to create Si clathrate with Li guests. Using time-of-flight secondary-ion mass spectroscopy, X-ray diffraction, and Raman scattering, thermal diffusion of Li into the nearly empty Si clathrate framework is detected and characterized as a function of the diffusion temperature and time. Interestingly, the Si clathrate exhibits reduced structural stability in the presence of Li, converting to polycrystalline or disordered phases for anneals at temperatures where the starting Na guest Si clathrate is quite stable. The Li atoms inserted into the Si clathrate lattice contribute free carriers, which can be detected in Raman scattering through their effect on the strength of Si−Si bonds in the framework. These carriers can also be observed in electron paramagnetic resonance (EPR). EPR shows, however, that Li guests are not simple analogues of Na guests. In particular, our results suggest that Li atoms, with their smaller size, tend to doubly occupy cages, forming “molecular-like” pairs with other Li or Na atoms. Results of this work provide a deeper insight into Li guest atoms in Si clathrate. These findings are also relevant to understanding how Li moves through and interacts with Si clathrate anodes in Li-ion batteries. Additionally, techniques presented in this work demonstrate a new method for filling the Si clathrate cages, enabling studies of a broad range of other guests in Si clathrates. 
    more » « less
  4. The guest‐free, type‐II Si clathrate (Si136) is an open cage polymorph of Si with structural features amenable to electrochemical Li storage. However, the detailed mechanism for reversible Li insertion and migration within the vacant cages of Si136is not established. Herein, X‐ray characterization and density functional theory (DFT) calculations are used to understand the structural origin of electrochemical Li insertion into the type‐II clathrate structure. At low Li content, instead of alloying with Si, topotactic Li insertion into the empty cages occurs at ≈0.3 V versus Li/Li+with a capacity of ≈231 mAh g−1(corresponding to composition Li32Si136). A synchrotron powder X‐ray diffraction analysis of electrodes after lithiation shows evidence of Li occupation within the Si20and Si28cages and a volume expansion of 0.22%, which is corroborated by DFT calculations. Nudged elastic band calculations suggest a low barrier (0.2 eV) for Li migration through interconnected Si28cages, whereas there is a higher barrier for Li migration into Si20cages (2.0 eV). However, if Li is present in a neighboring cage, a cooperative migration pathway with a barrier of 0.65 eV is possible. The results show that the type‐II Si clathrate displays unique electrochemical properties for potential applications as Li‐ion battery anodes. 
    more » « less
  5. null (Ed.)
    Silicon anodes are promising for high energy batteries because of their excellent theoretical gravimetric capacity (3579 mA h g −1 ). However, silicon's large volume expansion and poor conductivity hinder its practical application; thus, binders and conductive additives are added, effectively diluting the active silicon material. To address this issue, reports of 2D MXene nanosheets have emerged as additives for silicon anodes, but many of these reports use high MXene compositions of 22–66 wt%, still presenting the issue of diluting the active silicon material. Herein, this report examines the question of what minimal amount of MXene nanosheets is required to act as an effective additive while maximizing total silicon anode capacity. A minimal amount of only 4 wt% MXenes (with 16 wt% sodium alginate and no carbon added) yielded silicon anodes with a capacity of 900 mA h g Si −1 or 720 mA h g total −1 at the 200 th cycle at 0.5 C-rate. Further, this approach yielded the highest specific energy on a total electrode mass basis (3100 W h kg total −1 ) as comapared to other silicon-MXene constructs (∼115–2000 Wh kg total −1 ) at a corresponding specific power. The stable electrode performance even with a minimal MXene content is attributed to several factors: (1) highly uniform silicon electrodes due to the dispersibility of MXenes in water, (2) the high MXene aspect ratio that enables improved electrical connections, and (3) hydrogen bonding among MXenes, sodium alginate, and silicon particles. All together, a much higher silicon loading (80 wt%) is attained with a lower MXene loading, which then maximizes the capacity of the entire electrode. 
    more » « less