skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the absence of stationary currents
We review the proofs of a theorem of Bloch on the absence of macroscopic stationary currents in quantum systems. The standard proof shows that the current in 1D vanishes in the large volume limit under rather general conditions. In higher dimensions, the total current across a cross-section does not need to vanish in gapless systems but it does vanish in gapped systems. We focus on the latter claim and give a self-contained proof motivated by a recently introduced index for the many-body charge transport in quantum lattice systems having a conserved [Formula: see text]-charge.  more » « less
Award ID(s):
1907435
PAR ID:
10253081
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Reviews in Mathematical Physics
Volume:
33
Issue:
01
ISSN:
0129-055X
Page Range / eLocation ID:
2060011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Let $$E/\mathbb {Q}$$ be a number field of degree $$n$$ . We show that if $$\operatorname {Reg}(E)\ll _n |\!\operatorname{Disc}(E)|^{1/4}$$ then the fraction of class group characters for which the Hecke $$L$$ -function does not vanish at the central point is $$\gg _{n,\varepsilon } |\!\operatorname{Disc}(E)|^{-1/4-\varepsilon }$$ . The proof is an interplay between almost equidistribution of Eisenstein periods over the toral packet in $$\mathbf {PGL}_n(\mathbb {Z})\backslash \mathbf {PGL}_n(\mathbb {R})$$ associated to the maximal order of $$E$$ , and the escape of mass of the torus orbit associated to the trivial ideal class. 
    more » « less
  2. Drouhin, Henri-Jean M.; Wegrowe, Jean-Eric; Razeghi, Manijeh (Ed.)
    Parafermions or Fibonacci anyons leading to universal quantum computing, require strongly interacting systems. A leading contender is the fractional quantum Hall effect, where helical channels can arise from counterpropagating chiral modes. These modes have been considered weakly interacting. However, experiments on transport in helical channels in the fractional quantum Hall effect at a 2/3 filling shows current passing through helical channels on the boundary between polarized and unpolarized quantum Hall liquids nine-fold smaller than expected. This current can increase three-fold when nuclei near the boundary are spin polarized. We develop a microscopic theory of strongly interacting helical states and show that emerging helical Luttinger liquid manifests itself as unequally populated charge, spin and neutral modes in polarized and unpolarized fractional quantum Hall liquids. We show that at strong coupling counter-propagating modes of opposite spin polarization emerge at the sample edges, providing a viable path for generating proximity topological superconductivity and parafermions. Current, calculated in strongly interacting picture is in agreement with the experimental data. 
    more » « less
  3. In this work, we provide an analytical proof of the robustness of a form of topological entanglement under a model of random local perturbations. We define the notion of topological purity and show that, in the context of quantum double models, this quantity does detect topological order and is robust under the action of a random shallow quantum circuit. 
    more » « less
  4. Low-frequency electronic noise in charge-density-wave van der Waals materials has been an important characteristic, providing information about the material quality, phase transitions, and collective current transport. However, the noise sources and mechanisms have not been completely understood, particularly for the materials with a non-fully gapped Fermi surface where the electrical current includes components from individual electrons and the sliding charge-density wave. We investigated noise in nanowires of quasi-one-dimensional NbSe3, focusing on a temperature range near the Pearls transition TP1 ∼ 145 K. The data analysis allowed us to separate the noise produced by the individual conduction electrons and the quantum condensate of the charge density waves before and after the onset of sliding. The noise as a function of temperature and electric bias reveals several intriguing peaks. We explained the observed features by the depinning threshold field, the creep and sliding of the charge density waves, and the possible existence of the hidden phases. It was found that the charge density wave condensate is particularly noisy at the moment of depinning. The noise of the collective current reduces with the increasing bias voltage in contrast to the noise of the individual electrons. Our results shed light on the behavior of the charge density wave quantum condensate and demonstrate the potential of noise spectroscopy for investigating the properties of low-dimensional quantum materials. 
    more » « less
  5. Abstract A P-N junction engineered within a Dirac cone system acts as a gate tunable angular filter based on Klein tunneling. For a 3D topological insulator with a substantial bandgap, such a filter can produce a charge-to-spin conversion due to the dual effects of spin-momentum locking and momentum filtering. We analyze how spins filtered at an in-plane topological insulator PN junction (TIPNJ) interact with a nanomagnet, and argue that the intrinsic charge-to-spin conversion does not translate to an external gain if the nanomagnet also acts as the source contact. Regardless of the nanomagnet’s position, the spin torque generated on the TIPNJ is limited by its surface current density, which in turn is limited by the bulk bandgap. Using quantum kinetic models, we calculated the spatially varying spin potential and quantified the localization of the current versus the applied bias. Additionally, with the magnetodynamic simulation of a soft magnet, we show that the PN junction can offer a critical gate tunability in the switching probability of the nanomagnet, with potential applications in probabilistic neuromorphic computing. 
    more » « less