Quantum spin liquids, exotic phases of matter with topological order, have been a major focus in physics for the past several decades. Such phases feature long-range quantum entanglement that can potentially be exploited to realize robust quantum computation. We used a 219-atom programmable quantum simulator to probe quantum spin liquid states. In our approach, arrays of atoms were placed on the links of a kagome lattice, and evolution under Rydberg blockade created frustrated quantum states with no local order. The onset of a quantum spin liquid phase of the paradigmatic toric code type was detected by using topological string operators that provide direct signatures of topological order and quantum correlations. Our observations enable the controlled experimental exploration of topological matter and protected quantum information processing.
more »
« less
Stability of topological purity under random local unitaries
In this work, we provide an analytical proof of the robustness of a form of topological entanglement under a model of random local perturbations. We define the notion of topological purity and show that, in the context of quantum double models, this quantity does detect topological order and is robust under the action of a random shallow quantum circuit.
more »
« less
- Award ID(s):
- 2014000
- PAR ID:
- 10341157
- Date Published:
- Journal Name:
- SciPost Physics
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2542-4653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract How fast a state of a system converges to a stationary state is one of the fundamental questions in science. Some Markov chains and random walks on finite groups are known to exhibit the non-asymptotic convergence to a stationary distribution, called the cutoff phenomenon. Here, we examine how quickly a random quantum circuit could transform a quantum state to a Haar-measure random quantum state. We find that random quantum states, as stationary states of random walks on a unitary group, are invariant under the quantum Fourier transform (QFT). Thus the entropic uncertainty of random quantum states has balanced Shannon entropies for the computational basis and the QFT basis. By calculating the Shannon entropy for random quantum states and the Wasserstein distances for the eigenvalues of random quantum circuits, we show that the cutoff phenomenon occurs for the random quantum circuit. It is also demonstrated that the Dyson-Brownian motion for the eigenvalues of a random unitary matrix as a continuous random walk exhibits the cutoff phenomenon. The results here imply that random quantum states could be generated with shallow random circuits.more » « less
-
Producing quantum states at random has become increasingly important in modern quantum science, with applications being both theoretical and practical. In particular, ensembles of such randomly distributed, but pure, quantum states underlie our understanding of complexity in quantum circuits1 and black holes2, and have been used for benchmarking quantum devices3,4 in tests of quantum advantage5,6. However, creating random ensembles has necessitated a high degree of spatio-temporal control7,8,9,10,11,12 placing such studies out of reach for a wide class of quantum systems. Here we solve this problem by predicting and experimentally observing the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics, which we use to implement an efficient, widely applicable benchmarking protocol. The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system, offering new insights into quantum thermalization13. Predicated on this discovery, we develop a fidelity estimation scheme, which we demonstrate for a Rydberg quantum simulator with up to 25 atoms using fewer than 104 experimental samples. This method has broad applicability, as we demonstrate for Hamiltonian parameter estimation, target-state generation benchmarking, and comparison of analogue and digital quantum devices. Our work has implications for understanding randomness in quantum dynamics14 and enables applications of this concept in a much wider context 4,5,9,10,15,16,17,18,19,20.more » « less
-
Topological phases of matter offer a promising platform for quantum computation and quantum error cor- rection. Nevertheless, unlike its counterpart in pure states, descriptions of topological order in mixed states remain relatively underexplored. Our work gives two definitions for replica topological order in mixed states, which involve n copies of density matrices of the mixed state. Our framework categorizes topological orders in mixed states as either quantum, classical, or trivial, depending on the type of information that can be encoded. For the case of the toric code model in the presence of decoherence, we associate for each phase a quantum channel and describes the structure of the code space. We show that in the quantum-topological phase, there exists a postselection-based error correction protocol that recovers the quantum information, while in the classical-topological phase, the quantum information has decohere and cannot be fully recovered. We accomplish this by describing the mixed state as a projected entangled pairs state (PEPS) and identifying the symmetry-protected topological order of its boundary state to the bulk topology. Using this formalism, we enumerate all the possible mixed state phases which result from applying a local decoherence channel to the toric code. In addition to the classical-topological phases that have been previously reported on, we also find mixed states exhibiting chiral topological order. We discuss the extent that our findings can be extrapolated to n → 1 limit.more » « less
-
Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)Persistence diagrams are one of the most pop- ular types of data summaries used in Topological Data Analysis. The prevailing statistical approach to analyzing persistence diagrams is concerned with filtering out topological noise. In this paper, we adopt a different viewpoint and aim at estimating the actual distribution of a random persistence diagram, which cap- tures both topological signal and noise. To that effect, Chazal and Divol (2019) proved that, under general conditions, the expected value of a random persistence diagram is a measure admitting a Lebesgue density, called the persistence intensity function. In this paper, we are concerned with estimating the persistence intensity function and a novel, normalized version of it – called the persistence density function. We present a class of kernel- based estimators based on an i.i.d. sample of persistence diagrams and derive estimation rates in the supremum norm. As a direct corollary, we obtain uniform consistency rates for estimating linear representations of persistence diagrams, including Betti numbers and persistence surfaces. Interestingly, the persistence density function delivers stronger statistical guarantees.more » « less
An official website of the United States government

