Recent reports on highly mobile type II twin boundaries challenge the established understanding of deformation twinning and motivate this study. We consider the motion of twin boundaries through the nucleation and growth of disconnection loops and develop a mechanism-based model for twin boundary motion in the framework of isotropic linear elasticity. While such mechanisms are well established for type I and compound twins, we demonstrate based on the elastic properties of crystals that type II twin boundaries propagate in a similar way. Nucleation of a type I twinning disconnection loop occurs in a discrete manner. In contrast, nucleation of a type II twinning disconnection loop occurs gradually with increasing Burgers vector. The gradual nucleation of a type II disconnection loop accounts for the higher mobility of type II twin boundaries compared with type I twin boundaries. We consider the homogeneous nucleation of a disconnection loop, which is adequate for twinning in shape memory alloys with a low-symmetry crystal lattice. For the magnetic shape memory alloy Ni-Mn-Ga, the model predicts twinning stresses of 0.33 MPa for type II twinning and 4.7 MPa for type I twinning. Over a wide temperature range, the twinning stress depends on temperature only through the temperature dependence of the elastic constants, in agreement with experimental results.
more »
« less
Mechanical properties of 2D aggregates of oil droplets as model mono-crystals
We investigate the elastic and yielding properties of two dimensional defect-free mono-crystals made of highly monodisperse droplets. Crystals are compressed between two parallel boundaries of which one acts as a force sensor. As the available space between boundaries is reduced, the crystal goes through successive row-reduction transitions. For small compression forces, the crystal responds elastically until a critical force is reached and the assembly fractures in a single catastrophic global event. Correspondingly there is a peak in the force measurement associated with each row-reduction. The elastic properties of ideal mono-crystal samples are fully captured by a simple analytical model consisting of an assembly of individual capillary springs. The yielding properties of the crystal are captured with a minimal bond breaking model.
more »
« less
- Award ID(s):
- 1804186
- PAR ID:
- 10253097
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 17
- Issue:
- 5
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 1194 to 1201
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report computer simulations of two-dimensional convex hard superellipse particle phases vs. particle shape parameters including aspect ratio, corner curvature, and sidewall curvature. Shapes investigated include disks, ellipses, squares, rectangles, and rhombuses, as well as shapes with non-uniform curvature including rounded squares, rounded rectangles, and rounded rhombuses. Using measures of orientational order, order parameters, and a novel stretched bond orientational order parameter, we systematically identify particle shape properties that determine liquid crystal and crystalline phases including their coarse boundaries and symmetry. We observe phases including isotropic, nematic, tetratic, plastic crystals, square crystals, and hexagonal crystals (including stretched variants). Our results catalog known benchmark shapes, but include new shapes that also interpolate between known shapes. Our results indicate design rules for particle shapes that determine two-dimensional liquid, liquid crystalline, and crystalline microstructures that can be realized via particle assembly.more » « less
-
Self-assembly of colloidal particles due to elastic interactions in nematic liquid crystals promises tunable composite materials and can be guided by exploiting surface functionalization, geometric shape and topology, though these means of controlling self-assembly remain limited. Here, we realize low-symmetry achiral and chiral elastic colloids in the nematic liquid crystals using colloidal polygonal concave and convex prisms. We show that the controlled pinning of disclinations at the prism edges alters the symmetry of director distortions around the prisms and their orientation with respect to the far-field director. The controlled localization of the disclinations at the prism's edges significantly influences the anisotropy of the diffusion properties of prisms dispersed in liquid crystals and allows one to modify their self-assembly. We show that elastic interactions between polygonal prisms can be switched between repulsive and attractive just by controlled re-pinning the disclinations at different edges using laser tweezers. Our findings demonstrate that elastic interactions between colloidal particles dispersed in nematic liquid crystals are sensitive to the topologically equivalent but geometrically rich controlled configurations of the particle-induced defects.more » « less
-
Abstract Dynamic molecular crystals are an emerging class of crystalline materials that can respond to mechanical stress by dissipating internal strain in a number of ways. Given the serendipitous nature of the discovery of such crystals, progress in the field requires advances in computational methods for the accurate and high–throughput computation of the nanomechanical properties of crystals on specific facets which are exposed to mechanical stress. Here, we develop and apply a new atomistic model for computing the surface elastic moduli of crystals on any set of facets of interest using dispersion–corrected density functional theory (DFT−D) methods. The model was benchmarked against a total of 24 reported nanoindentation measurements from a diverse set of molecular crystals and was found to be generally reliable. Using only the experimental crystal structure of the dietary supplement, L–aspartic acid, the model was subsequently applied under blind test conditions, to correctly predict the growth morphology, facet and nanomechanical properties of L–aspartic acid to within the accuracy of the measured elastic stiffness of the crystal, 24.53±0.56 GPa. This work paves the way for the computational design and experimental realization of other functional molecular crystals with tailor–made mechanical properties.more » « less
-
Abstract Grain boundaries critically limit the electronic performance of oxide perovskites. These interfaces lower the carrier mobilities of polycrystalline materials by several orders of magnitude compared to single crystals. Despite extensive effort, improving the mobility of polycrystalline materials (to meet the performance of single crystals) is still a severe challenge. In this work, the grain boundary effect is eliminated in perovskite strontium titanate (STO) by incorporating graphene into the polycrystalline microstructure. An effective mass model provides strong evidence that polycrystalline graphene/strontium titanate (G/STO) nanocomposites approach single crystal‐like charge transport. This phenomenological model reduces the complexity of analyzing charge transport properties so that a quantitative comparison can be made between the nanocomposites and STO single crystals. In other related works, graphene composites also optimize the thermal transport properties of thermoelectric materials. Therefore, decorating grain boundaries with graphene appears to be a robust strategy to achieve “phonon glass–electron crystal” behavior in oxide perovskites.more » « less
An official website of the United States government

